
TOWARDS SECURE SMART CONTRACTS: A DEEP LEARNING
APPROACH FOR DETECTING SECURITY THREATS

by

TAMER ABDELAZIZ ABDELMEGID MOHAMED
(M.Sc., Helwan University)

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE

SCHOOL OF COMPUTING

NATIONAL UNIVERSITY OF SINGAPORE

2023

Supervisors:
Siau-Cheng Khoo, Associate Professor , Main Supervisor

Aquinas Adam Hobor, Associate Professor , Co-Supervisor

Examiners:
Seth Lewis Gilbert, Associate Professor

Henz, Martin J, Associate Professor
Chang Ee Chien, Associate Professor

Declaration

I hereby declare that this thesis is my original work and it has
been written by me in its entirety. I have duly

acknowledged all the sources of information which have
been used in the thesis.

This thesis has also not been submitted for any
degree in any university previously.

Tamer Abdelaziz Abdelmegid Mohamed

December 31, 2023

Alhamdulillah, by Allah’s grace, I’ve earned my PhD! All

praise and thanks to Him, the source of all knowledge.

i

Acknowledgments

Reaching the pinnacle of my Ph.D. in Computer Science at the National University
of Singapore’s School of Computing has been a monumental feat, paved with
challenges and triumphs. None of it would have been possible without the invaluable
support and encouragement of a remarkable group of individuals.

First and foremost, my deepest gratitude goes to my advisors, Dr. Siau-Cheng
Khoo and Dr. Aquinas Adam Hobor. Their expertise, unwavering support, and
insightful guidance have been instrumental in shaping my research and academic
growth. From the initial research proposal to the final defense, their mentorship was
a constant source of inspiration and motivation.

My thesis examiners deserve immense appreciation for their insightful critiques
and encouragement. Their diverse perspectives pushed me to broaden my research,
resulting in a richer and more robust dissertation.

My labmates, with their collaboration, constructive criticism, and stimulating
discussions, have been my academic lifeline. Their diverse perspectives and research
interests not only enriched my research experience but also broadened my horizons.
I am deeply grateful for their camaraderie, friendship, and unwavering support,
making my journey as a researcher both impactful and enjoyable.

My research wouldn’t have been possible without the generous support of the
Singapore International Graduate Award (SINGA), Dr. Joxan Jaffar and the NUS
CRYSTAL Centre. This funding provided crucial resources and financial stability,
allowing me to fully immerse myself in my research pursuits.

Beyond academia, my family has been my rock throughout this journey. My
lovely wife Ola, my son Anas, my parents Abdelaziz and Hanya, and my siblings
Mahmoud and Abeer, have showered me with unwavering love, support, and belief in
my abilities. Their patience, understanding, and guidance were critical in sustaining
me through the highs and lows. I am eternally grateful for their contributions to my
personal and professional growth.

Finally, I express my heartfelt appreciation to the entire computer science
department at the School of Computing. The department’s vibrant culture of
innovation, excellence, and collaboration has been a constant source of inspiration

ii

and support. I am deeply grateful for the opportunities and resources provided,
which have shaped my research and academic success.

In conclusion, my profound gratitude goes to Dr. Khoo, Dr. Hobor, my thesis
examiners, labmates, funding sources, family, friends, and the entire School of
Computing community. Your invaluable support, guidance, and encouragement
have been the cornerstone of my Ph.D. journey, and I am eternally grateful for your
unwavering belief in me.

iii

Contents

Acknowledgments ii

Abstract viii

List of Figures x

List of Tables xiii

1 Introduction 1
1.1 Research Questions . 4
1.2 Contributions . 7
1.3 Thesis Statement . 10
1.4 Tools Specification . 10
1.5 Thesis Organization . 11

2 Background 13
2.1 Ethereum . 13
2.2 Smart Contracts . 14
2.3 Ethereum Virtual Machine . 15
2.4 Smart Contract Vulnerabilities . 19
2.5 Deep Learning: Methods and Applications 31

2.5.1 Learning Methods . 33
2.5.2 The Mechanics of a Basic Neural Network 38
2.5.3 Graph Neural Networks (GNNs) 39

2.6 Evaluation Metrics . 41

3 Related work 44
3.1 Static and Dynamic Analysis Methods for SC 45

iv

3.1.1 Symbolic Execution (SymEx) Studies/Tools: 49
3.1.2 Fuzzing (Fuz) Studies/Tools: 54
3.1.3 Static Analysis (StAn) Studies/Tools: 57

3.2 Learning-based Techniques for SC 60
3.2.1 Machine Learning (ML) Studies/Tools: 64
3.2.2 Sequential Deep Learning (Seq. DL) Studies/Tools: 72
3.2.3 Graph Deep Learning (Graph DL) Studies/Tools: 84

3.3 Learning-based Techniques for PL 89
3.3.1 Sequential Deep Learning (Seq. DL) Studies/Tools: 89
3.3.2 Graph Deep Learning (Graph DL) Studies/Tools: 94

3.4 Data Sources and Benchmarks . 96
3.4.1 Manually Crafted Datasets: 97
3.4.2 Real World Datasets: . 99

3.5 Summary of Related Work . 103
3.6 Comparing Our Approach to State-of-the-Art 110
3.7 Ethical Disclosure . 122
3.8 Threats to Validity . 122

4 Supervised Deep Learning: DLVA 125
4.1 Introduction . 126
4.2 Designing DLVA . 131

4.2.1 Preprocessing . 136
4.2.2 Unsupervised Node Feature Extraction: N2V 139
4.2.3 Supervised Training: SC2V and CC 140
4.2.4 Selection of hyperparameters 142
4.2.5 Sibling Detector (SD) . 143
4.2.6 Tweaking for smaller contracts 144
4.2.7 Final details . 144

4.3 Experiments and Evaluation . 145
4.3.1 Designing benchmark datasets 145
4.3.2 DLVA’s neural nets vs. alternatives 149
4.3.3 Evaluating DLVA’s models against Slither 154
4.3.4 DLVA vs. state-of-the-art tools 158

v

4.3.5 Discussion . 164
4.4 Key Comparative Studies . 169
4.5 Summary . 174
4.6 Availability . 175

5 Semi-Supervised Learning: SCooLS 176
5.1 Introduction . 177
5.2 Deep learning styles . 180
5.3 Design of data sets . 182
5.4 Designing SCooLS . 183

5.4.1 Preprocessing . 183
5.4.2 Graph Neural Networks (GNNs) 185
5.4.3 Semi-Supervised Self-Training 187
5.4.4 Final trained models . 188
5.4.5 Discussion . 188

5.5 Auto-Exploit Generator Design . 189
5.6 Experiments and Evaluation . 193

5.6.1 Evaluative Metrics . 193
5.6.2 Experimental setup . 194
5.6.3 SCooLS vs. state-of-the-art tools 195
5.6.4 Auto-exploit generator results 197

5.7 Key Comparative Studies . 198
5.8 Summary . 200
5.9 Availability . 201

6 Conclusion and Future Work 202
6.1 Conclusion . 202
6.2 Future Research Directions . 203

Bibliography 205

A Word vs. Sentence Embeddings 223
A.1 Word-level Embeddings . 224

A.1.1 Recurrent Neural Networks (RNNs) 224

vi

A.1.2 Long Short Term Memory Networks (LSTMs) 225
A.1.3 Applying the word-level embeddings during research 227

A.2 Sentence-level Embeddings . 229

Publications during PhD Study 230

vii

Abstract

The Ethereum blockchain has experienced a substantial surge in popularity in
recent years, which has manifested in its increased adoption and widespread usage,
leading to the development of decentralized applications (dApps) built on smart
contracts. However, smart contracts are susceptible to various security vulnerabilities
that can lead to devastating consequences. In this thesis, we propose a deep learning-
based approach to detect and exploit vulnerabilities in Ethereum smart contracts.

The first part of the thesis focuses on automated detection of vulnerabilities
in smart contracts, without requiring prior source code access. We use supervised
deep learning to identify vulnerabilities directly from publicly available blockchain
bytecode. This has resulted in the creation of a Deep Learning Vulnerability
Analyzer (DLVA) [3, 4, 5], which is a fast and efficient solution for smart contract
vulnerability detection. DLVA has a generic design and can be trained to recognize
future vulnerabilities easily without using any painstakingly-crafted expert rules or
predefined patterns. DLVA checks contracts for 29 distinct vulnerability types in
0.2 seconds, a speedup of 5-1,000x+ compared to traditional tools. Impressively, it
achieves this while maintaining an optimal balance between high true positive rates
and minimal false positive rates.

In the second part of this thesis, we demonstrate that the lack of large, labeled
data sets for training deep learning models poses a significant challenge for the effec-
tive detection of vulnerabilities. To address this challenge, we use semi-supervised
learning to produce more accurate models than unsupervised learning, while not
requiring the large oracle-labeled training set that supervised learning requires.
We propose a second solution called Smart Contract Learning (Semi-supervised)
(SCooLS) [2], which represents a pioneering application of semi-supervised learning
techniques in the realm of smart contracts vulnerability analysis. It uniquely enables
the precise detection and exploitation of specific vulnerable functions. Significantly,
it’s the first tool to not only identify these vulnerable functions but also to gener-
ate authentic attack demonstrations for end-users and developers. This approach
diverges from the traditional method of simply labeling the entire contract as vul-
nerable, providing developers with a tangible method to test the exploitability of
their contracts. SCooLS exhibits superior performance when compared to existing

viii

tools, showcasing exceptional accuracy, a notable F1 score, and an impressively low
false positive rate. Additionally, SCooLS demonstrates remarkable speed in analyz-
ing contract’s functions. Leveraging its capability to pinpoint specific vulnerable
functions, we successfully developed an exploit generator. This generator effectively
extracted Ether from a significant portion of the identified vulnerable functions
considered true positives.

Our deep learning approach is capable of detecting a higher number of vulnera-
bilities with a lower false positive rate, while being computationally efficient, making
it a promising solution for enhancing the security of smart contracts.

ix

List of Figures

1.1 An illustration depicting the reentrancy attack on DAO. 3
1.2 DLVA Specification. 10
1.3 SCooLS Specification. 11

2.1 Ethereum Virtual Machine (EVM), adapted from ethereum.org 16
2.2 Sample representation of Solidity source code 17
2.3 Sample representation of EVM bytecode 17
2.4 Sample representation of EVM opcodes 17
2.5 Smart Contract Control Flow Graph (adapted from [37]). 18
2.6 Reentrancy Exploit (DAO) Example 30
2.7 The relationship between artificial intelligence, machine learning, and

deep learning. 32
2.8 Machine Learning vs Deep Learning. 34
2.9 Artifical Neural Network. 38
2.10 Multilayer Perceptron Neural Network. 39
2.11 Graph-structured data. 40

3.1 Static and Dynamic Analysis for SC in primary studies. 49
3.2 Learning-based Techniques for SC in primary studies; “Available*” with

the asterisk denoting potential availability of some studies upon request
approval; “Source code*” with the asterisk denoting the analysis level
for some studies requires source code and/or potential alternatives like
transactions or account data. 66

3.3 Learning-based Techniques for PL in primary studies. 90

x

3.4 Distribution of Tool Availability in SC vulnerability detection studies
over time; “Available*” with the asterisk denoting potential availability
of some studies upon request approval. 105

3.5 Distribution of Analysis Levels in SC vulnerability detection studies
over time; “Source code*” with the asterisk denoting the analysis level
for some studies requires source code and/or potential alternatives like
transactions or account data. 106

3.6 DLVA vs. STATE-OF-THE-ART Tools; Completion Rate (i.e., the
percentage of contracts for which a tool produces an answer rather than,
e.g., raising an exception, timing out, running out of memory, the higher
the better) tested on the Elysiumbenchmark [7], Reentrancybenchmark [11],
and SolidiFIbenchmark [13]; star ⋆ indicates the mean; plus + indicates
outliers . 112

3.7 DLVA vs. STATE-OF-THE-ART Tools; True Positive Rate (i.e., de-
tection rate; the higher the better) tested on the Elysiumbenchmark [7],
Reentrancybenchmark [11], and SolidiFIbenchmark [13]; star ⋆ indicates the
mean; plus + indicates outliers . 113

3.8 DLVA vs. STATE-OF-THE-ART Tools; False Positive Rate (i.e., false
alarm rate; the lower the better) tested on the Elysiumbenchmark [7],
Reentrancybenchmark [11], and SolidiFIbenchmark [13]; star ⋆ indicates the
mean; plus + indicates outliers . 114

3.9 DLVA vs. STATE-OF-THE-ART Tools; Accuracy (the higher the bet-
ter) tested on the Elysiumbenchmark [7], Reentrancybenchmark [11], and
SolidiFIbenchmark [13]; star ⋆ indicates the mean; plus + indicates outliers 115

3.10 DLVA vs. STATE-OF-THE-ART Tools; Average analysis time per con-
tract (the graph is in log scale, the lower the better) tested on the
Elysiumbenchmark [7], Reentrancybenchmark [11], and SolidiFIbenchmark [13];
star ⋆ indicates the mean; plus + indicates outliers 116

3.11 SCooLS vs. STATE-OF-THE-ART Tools; Accuracy (the higher the
better); F1 (i.e., the harmonic mean of precision and recall; the higher
the better) False Positive Rate (FPR) (i.e., false alarm rate; the lower
the better); Average analysis time per function (the lower the better);
tested on the ReentrancyBook [12] . 119

xi

3.12 Comparison of reported tool performance by its authors versus indepen-
dent benchmarking results tested on the Elysiumbenchmark [7], Reentrancybenchmark [11],
and SolidiFIbenchmark [13] . 121

4.1 DLVA vs. alternatives on the Elysiumbenchmark [7], Reentrancybenchmark [11],
and SolidiFIbenchmark [13]; star ⋆ indicates the mean; plus + indicates
outliers . 129

4.2 The Deep Learning Vulnerability Analyzer (DLVA). 135
4.3 EthereumSC Data Set Histogram. 137
4.4 Vulnerability Frequencies of EthereumSC Dataset. 138
4.5 Sentence Embeddings using Universal Sentence Encoder based on Deep

Averaging Network(DAN). 140
4.6 USE-generated vector embeddings . 141
4.7 Evaluating SC2V vs. state-of-the-art GNNs 150
4.8 t-SNE-Embeddings for the “unchecked-lowlevel” Vulnerability. 151
4.9 DLVA-CC vs. ten “off-the-shelf” ML classifiers and a majority voting

strategy (⋆ is the average; + are outliers) 153
4.10 Deep Learning Vulnerability Analysis Tool Score Summary for 29 Vul-

nerabilities of EthereumSClarge Dataset (The star symbol ⋆ represents
the average, while the plus + represents outliers) 155

5.1 Fuzzy C-Means clustering algorithm for reentrancy. 181
5.2 Data Preprocessing and Graph Neural Networks (GNNs) Design. . . . 184
5.3 Architecture of a Transformer with six encoder layers. 186
5.4 The Smart Contracts Semi-Supervised Learning (SCooLS). 187
5.5 Training Accuracy and Loss, and Validation Accuracy and Loss 195

A.1 Recurrent Neural Networks (RNNs). 225
A.2 Long Short Term Memory Networks (LSTMs). 226
A.3 Node Instructions Composition using Bidirectional Long Short-Term

Memory. 228

xii

List of Tables

3.1 Static and Dynamic Analysis for SC in primary studies. 50
3.2 Learning-based Techniques for SC in primary studies; “Available*” with

the asterisk denoting potential availability of some studies upon request
approval; “Source code*” with the asterisk denoting the analysis level
for some studies requires source code and/or potential alternatives like
transactions or account data. 65

3.3 Learning-based Techniques for PL in primary studies. 91
3.4 Data Sources and Benchmarks. 98

4.1 29 vulnerabilities in EthereumSClarge (200+ times); ⋆ indicates 21 vulner-
abilities in EthereumSCsmall (30+ times) 132

4.2 Datasets used for benchmarking DLVA 146
4.3 Best of the ten commonly used machine learning supervised binary

classifiers results . 152
4.4 DLVA Trained on EthereumSClarge (use DLVA’s core classifier only for

the entire test set) . 156
4.5 DLVA Trained on EthereumSClarge (Sibling Detector Results) 157
4.6 DLVA Trained on EthereumSClarge (Core Classifier Results) 158
4.7 DLVA Trained on EthereumSClarge (Results when SD and CC are working

together) . 159
4.8 DLVA Trained on EthereumSCsmall(use DLVA’s core classifier for the

entire test set) . 160

xiii

4.9 Comparison of DLVA vs. state-of-the-art tools; Input: (S: Source
code, B:Bytecode, S/B–: Source preferred, bytecode possible); Method:
(SA/DA:Static/Dynamic Analysis, ML/DL:Machine/Deep Learning);
Vul: # of vulnerability detectors; Year: year of release of the used
version; Cits: number of citations from Google Scholar on 01/12/2023. 161

4.10 Small contracts, bytecode analyzers; Exp: Exceptions; Vulnerability:
{RE:Reentrancy, PB:Parity Bug}; GP: Ground Positives; GN: Ground
Negatives; FN: False Negatives; FP: False Positives; ΣF: Sum of Failures 165

4.11 Small contracts, source code analyzers; Exp: Exceptions; Vulnerability:
{RE:Reentrancy, PB:Parity Bug}; GP: Ground Positives; GN: Ground
Negatives; FN: False Negatives; FP: False Positives; ΣF: Sum of Failures 166

4.12 Large contracts; Exp: Exceptions; Vulnerability: (RE:Reentrancy, TS:Timestamp-
Dependency, OU:Over/Underflow, TX:tx.origin); GP: Ground Positives;
GN: Ground Negatives; FN: False Negatives; FP: False Positives; ΣF:
Sum of Failures . 167

5.1 The BigBook data set. 194
5.2 SCooLS vs. state-of-the-art tools. 196
5.3 Results on ReentrancyTestBook. 197
5.4 The Auto-Exploit Generator. 198

xiv

CHAPTER 1. INTRODUCTION

Chapter 1

Introduction
Blockchain is a decentralized and distributed digital ledger that records transac-

tions in a secure and transparent manner. It is essentially a database that stores
a continuously growing list of records called blocks, which are linked together and
secured using cryptographic techniques. Each block contains a cryptographic hash of
the previous block, a timestamp, and a set of transactions that have been verified and
validated by network participants called nodes. The blockchain ledger is maintained
and updated by a decentralized network of nodes, which work together to reach a
consensus on the state of the ledger.

Cryptocurrency, on the other hand, is a digital or virtual currency that uses
cryptography for security and operates independently of a central bank. Cryptocur-
rencies are based on blockchain technology and use a decentralized network of nodes
to validate transactions and maintain the integrity of the ledger. Cryptocurren-
cies enable peer-to-peer transactions without the need for intermediaries, such as
banks, and provide users with a high degree of privacy and anonymity. Bitcoin
and Ethereum are two prominent cryptocurrencies that are based on blockchain
technology but differ in their purpose, features, and use cases.

Bitcoin was the first cryptocurrency, created in 2009 by an unknown individual or
group using the pseudonym Satoshi Nakamoto [102]. It was designed as a decentral-
ized and trustless digital currency that operates without the need for intermediaries,
such as banks. Bitcoin uses a proof-of-work consensus algorithm, where miners
compete to solve complex mathematical puzzles to validate transactions and add
blocks to the blockchain. Bitcoin transactions are irreversible and transparent, with
all transactions recorded on the public blockchain. Bitcoin’s main use case is as a
digital currency for peer-to-peer transactions, allowing users to send and receive

1

CHAPTER 1. INTRODUCTION

payments globally without the need for traditional financial institutions. Bitcoin
has gained popularity as a store of value and a hedge against inflation, with some
investors considering it as a digital gold.

Ethereum, on the other hand, is a blockchain platform that goes beyond being
just a cryptocurrency. It was proposed by Vitalik Buterin in 2013 and launched in
2015 [145]. Ethereum’s primary purpose is to serve as a decentralized platform for
building decentralized applications (dApps) and smart contracts (SC). Ethereum
has its own cryptocurrency called Ether (ETH), which is used to pay for transaction
fees and incentivize network participants. Ethereum introduced the concept of
smart contracts, which are self-executing digital contracts that run on the Ethereum
blockchain. Smart contracts allow developers to create decentralized applications,
ranging from DeFi protocols and digital identity solutions to decentralized games and
decentralized exchanges. One of the key features of Ethereum is its programmability,
which enables developers to create their own tokens, implement custom logic, and
build decentralized applications with their own rules and functionality. Ethereum
also allows for more complex and flexible transactions, including multi-signature
wallets and decentralized autonomous organizations (DAOs).

In 2016, the DAO was a decentralized investment fund built on the Ethereum
blockchain, which raised over $150 million worth of Ether in a crowdsale. However,
the DAO’s smart contract had a vulnerability that allowed an attacker to siphon off
over $50 million worth of Ether from the fund [95, 121]. As shown in Figure 1.1, the
attack was a reentrancy attack, which involved a flaw in the smart contract’s code
that allowed the attacker to repeatedly withdraw funds from the DAO without the
contract properly accounting for the withdrawals. The attacker’s malicious contract
was able to repeatedly call the “withdrawBalance” function in the DAO contract
before it could complete its initial execution, allowing the attacker to siphon off
Ether from the DAO contract. The attacker then moved the stolen Ether into a
child DAO, effectively bypassing the DAO’s intended security measures. After the
attack was discovered, the Ethereum community proposed two options for addressing
the issue: a soft fork to blacklist the attacker’s address and prevent them from
accessing the stolen Ether or a hard fork to roll back the entire Ethereum blockchain
to the point before the attack occurred. Eventually, the hard fork was implemented,
resulting in the creation of Ethereum and Ethereum Classic.

2

CHAPTER 1. INTRODUCTION

Figure 1.1: An illustration depicting the reentrancy attack on DAO.

In July 2017, a vulnerability was discovered in Parity’s multi-sig wallet, which
allowed an attacker to steal funds from a number of deployed contracts. The
vulnerability was traced back to an issue in the wallet’s smart contract code that
enabled an attacker to trigger a function that changed the ownership of the wallet,
without proper authorization. Specifically, the vulnerability was related to the
way the wallet’s ownership structure was implemented. The wallet used a “library”
contract to handle its logic, and the library contract was designed to be upgradeable
by the wallet’s owner. However, the library contract was not properly protected
against unauthorized changes, and the attacker was able to take advantage of this
flaw to call a function that transferred ownership of the wallet to the attacker’s
address. As a result, the attacker gained full control over the wallet and was able to
drain the funds from the affected multi-sig wallets. The incident resulted in the loss
of approximately 153,037 ETH, which was worth $30 million of dollars at the time.

In November 2017, another vulnerability was discovered in Parity’s multi-sig
wallet, which led to the freezing of approximately 513,774 ETH, worth $150 million
of dollars [129]. This vulnerability was caused by a similar issue related to the
ownership structure and upgradeability of the wallet’s smart contract code. In this
case, a user accidentally triggered a function in the wallet’s code that had been
previously identified as vulnerable, resulting in a “freeze” of the affected multi-sig
wallets. The function was intended to initialize the wallet’s internal state, but it

3

CHAPTER 1. INTRODUCTION

was not designed to handle re-initialization, and as a result, it locked the funds in
the affected wallets, rendering them inaccessible. Despite efforts by the Parity team
to address the issue and recover the frozen funds, it was ultimately not possible to
unfreeze the wallets, and the funds remained locked.

The occurrence of smart contract attacks such as the DAO attack and the Parity
wallet attack highlighted the criticality of proper smart contract development and
program analysis in detecting vulnerabilities prior to deployment on the blockchain.
These incidents exemplified the difficulties associated with addressing smart con-
tract vulnerabilities and mitigating unauthorized access and potential financial loss.
Therefore, it is essential to have robust security measures in place to ensure the
integrity of smart contracts, as well as to provide timely responses to mitigate the
impact of any potential attacks.

One of the foremost challenges in the detection of vulnerabilities within smart
contracts is the limited availability of their source code. A mere 0.3% of the roughly
49 million smart contracts presently deployed on the Ethereum blockchain offer
public access to their source code. As of March 2022, out of the 49,183,523 smart
contracts recorded on the Ethereum blockchain [56], merely 152,996, as verified
by the Smart Contract Sanctuary project 1, have exposed their source code to the
public. This indicates that a vast majority, approximately 99.7% of smart contracts,
lack publicly accessible source code [48]. Moreover, the interconnected nature of
smart contracts, where they can invoke functions in other smart contracts, implies
that security vulnerabilities present in bytecode-only or “closed-source” contracts
have the potential to impact even those with readily available source code.

1.1 Research Questions
The aforementioned security breaches involving smart contracts raise questions

about their overall safety. While Ethereum’s powerful features enable cutting-
edge applications, its use of Turing-complete languages for smart contract creation
introduces potential vulnerabilities and casts doubt on the guaranteed security of
blockchain technology. Despite the widespread belief that blockchain applications
are highly secure and impregnable, the DAO and Parity wallet hacks illustrate how

1https://github.com/tintinweb/smart-contract-sanctuary-ethereum

4

https://github.com/tintinweb/smart-contract-sanctuary-ethereum

CHAPTER 1. INTRODUCTION

vulnerabilities in smart contracts can render them susceptible to attacks. While
extensive efforts have focused on static analysis tools to find security flaws in smart
contracts, relatively little research has explored leveraging deep learning techniques
to build practical tools for assessing whether malicious actors could exploit real-world
vulnerabilities in smart contracts. Why learning-based approaches can significantly
contribute to smart contract security and vulnerability detection:

1) Adaptability to Complex Contracts: Modern smart contracts are highly
expressive, meaning they can perform intricate tasks and calculations. Tra-
ditional security methods often struggle to keep up with this complexity.
Learning-based approaches, however, can adapt to the evolving nature of
smart contracts by learning from data and identifying patterns, allowing them
to detect vulnerabilities in even the most complex contracts.

2) Proven Track Record in Security: Beyond smart contracts, learning-
based approaches have already demonstrated success in securing other areas
of computing [16]. For example, they’ve been effective in detecting malware,
preventing software vulnerabilities, and protecting networks from intrusion.
This proven track record in diverse security domains suggests that they can
be similarly effective in securing smart contracts.

Challenges: While state-of-the-art approaches have made significant progress in
identifying vulnerabilities and potential exploits in smart contracts, they still face
several key challenges:

1) Source Code Scarcity: Most existing approaches rely heavily on analyzing
the source code of smart contracts. However, only a tiny fraction (less than
1%) of deployed contracts have their source code publicly available. In contrast,
all contracts have their bytecode readily accessible. This poses a key research
question:

RQ1: How can we leverage deep learning to identify potential
vulnerabilities in smart contract bytecode, even without access to
the source code?

5

CHAPTER 1. INTRODUCTION

2) Maintainability: Static analysis approaches rely on predefined rules to
detect vulnerabilities, are often limited in their effectiveness. The accuracy of
these tools depends heavily on the completeness and quality of their rule sets.
Outdated or incomplete rules can lead to missed vulnerabilities, creating a
constant need for manual updates to keep up with evolving threats and attack
vectors. This raises another research question:

RQ2: Can we develop deep learning techniques that effectively learn
the characteristics of vulnerable bytecodes, without relying on expert
rules or predefined patterns?

3) Scalability: Many static analysis approaches use symbolic execution that
explores multiple paths through a program, resulting in “path explosion
problem”, especially in complex programs with loops, recursive functions,
or large inputs. This can lead to scalability issues, significantly increasing
computational resources and analysis time. Therefore, a crucial research
question emerges:

RQ3: Can we develop deep learning techniques to overcome the
scalability challenge and efficiently analyze complex smart contracts?

4) Lack of labels: A major drawback of supervised learning-based approach lies
in its reliance on vast amounts of labeled training data. Acquiring such data
can be a costly and time-consuming endeavor, especially for niche areas like
smart contract vulnerabilities. Furthermore, labeling data can be subjective
and prone to errors, potentially leading to biased models with compromised
accuracy. This poses a critical research question:

RQ4: How can we effectively train deep learning models for smart
contract vulnerability detection when labeled data is scarce, expen-
sive, or difficult to obtain?

5) Localization and Auto-Exploit Generation: Many learning-based tools
for smart contract vulnerability detection fall short in providing specific and
actionable insights: a) They often classify contracts as simply “vulnerable”
or “non-vulnerable” without pinpointing the exact vulnerability type or its
location within the bytecode. b) They fail to demonstrate how an attacker

6

CHAPTER 1. INTRODUCTION

could exploit the vulnerabilities, limiting developers’ ability to understand and
address potential threats. This highlights a crucial research question:

RQ5: How can we develop mechanisms to confirm detected vulnera-
bilities using exploit generation techniques, effectively demonstrating
to developers the potential actions of attackers against their smart
contracts?

These questions are designed to guide our investigation of detecting security
threats in smart contracts using deep learning-based approaches.

1.2 Contributions
Through our study, we have contributed to the field of blockchain security by

exploring the effectiveness of using deep learning to enhance the security of smart
contracts. The main contributions of this thesis are summarized as follows:

1) To address RQ1, RQ2, and RQ3 — We design and develop Deep Learning
Vulnerability Analyzer (DLVA) [3, 4, 5] — a vulnerability detection tool for
Ethereum smart contracts based on powerful deep learning techniques adapted
for smart contract bytecode.

• We train DLVA to judge bytecode even though the supervising oracle,
Slither, can only judge source code. DLVA’s training algorithm is general:
we “extend” a source code analysis to bytecode without any manual
feature engineering, predefined patterns, or expert rules.

• We develop a Smart Contract to Vector (SC2V) engine that maps smart
contract bytecode into a high-dimensional floating-point vector space.
SC2V uses a mix of neural nets trained in both unsupervised and super-
vised manners. We use Slither for supervision, labeling each contract as
vulnerable or non-vulnerable for each of the 29 vulnerabilities we handle.
We provide no expert rules or other “hints” during training. We evaluate
the SC2V engine against four state-of-the-art graph neural networks and
show it is 2.2% better than the average competitor and 1.2% better than
the best.

7

CHAPTER 1. INTRODUCTION

• Our Sibling Detector (SD) classifies contracts according to the labels of
other contracts Euclidian-nearby in the vector space. Our SD is highly
accurate, showing the quality of SC2V: on the 55.7% of contracts in our
test set that it can judge, it has an accuracy (to Slither) of 97.4% and an
associated FPR of only 0.1%.

• We design the Core Classifier (CC) of DLVA using additional neural
networks, trained in a supervised manner using the same labeled dataset
as SC2V. On the “harder” 44.3% of our test set, the CC has an accuracy
(to Slither) of 80.0% with an associated FPR of 21.4%. The CC is solving
a harder problem than the SD, at it must classify contracts that are quite
different from those seen during training. We evaluate the CC against
ten off-the-shelf machine learning methods and show that it beats the
average competitor by 11.3% and the best by 8.4%.

• DLVA is the combination of SC2V, SD, and CC. This whole is greater
than its parts: DLVA judges every contract in the test set, with an average
accuracy (to Slither) of 87.7% and FPR of 12.0%.

• Small contracts are simpler than larger ones. We tweak our design to
better handle such contracts and retrain. On small contracts, DLVA has
an average accuracy (to Slither) of 97.6% with a FPR of 2.3%.

• Accordingly, DLVA’s overall accuracy (average of large and small) is
92.7% with a FPR of 7.2%.

• We propose and evaluate six datasets to benchmark DLVA and its com-
ponents. We benchmark DLVA against eight static analyzers and three
learning-based analyzers.

• DLVA is much faster than conventional tools for smart contract vulner-
ability detection based on formal methods: DLVA checks contracts for
29 vulnerabilities in 0.2 seconds, a speedup of 5-1,000x+ compared to
traditional tools that do not scale nearly as well as program complexity
and length grows.

2) To address RQ4, and RQ5 — We design and implement Smart Contract
Learning (Semi-supervised) SCooLS [2].

8

CHAPTER 1. INTRODUCTION

• SCooLS takes smart contract vulnerability analysis to a new level with its
groundbreaking application of semi-supervised learning. It’s the first tool
to not only pinpoint specific vulnerable functions in bytecode but also
generate real-world attack demonstrations for developers and users. This
revolutionizes vulnerability detection by moving beyond simply labeling
the entire contract as vulnerable. Instead, SCooLS provides developers
with concrete ways to test and understand the exploitability of their
contracts, empowering them to take proactive security measures.

• Semi-supervised learning method that aims to address the challenge of
limited availability of high-confidence labeled code data in practical smart
contract vulnerability classification tasks.

• In total we train 120 distinct models derived from applying a variety of
hyperparameters to five state-of-the-art graph neural networks, using a
voting system to smooth out the variance in individual models during
training.

• We measure the performance of SCooLS and compare it with three state-
of-the-art tools. SCooLS dominates the competition, obtaining a higher
accuracy level of 98.4%, a higher F1 score of 90.5%, and the lowest false
positive rate of just 0.8%. Moreover, the analysis is fast, requiring only
0.05 seconds per function.

• SCooLS implements an auto-exploit generator to prove that the detected
vulnerabilities can be exploited by attackers to steal contract funds. The
exploit generator was able to attack 76.9% of the true positive instances
for which an ABI was available.

3) DLVA, SCooLS, data sets, and benchmarks are publicly available to enable
contract developers to assess the security of their smart contracts prior to
deployment on the blockchain.

9

CHAPTER 1. INTRODUCTION

Figure 1.2: DLVA Specification.

1.3 Thesis Statement
Deep learning enables rapid and efficient detection of vulnerabilities in smart

contracts, along with accurate exploit demonstrations. This leads to significantly
improved accuracy and reduced false positives, paving the way for practical and
reliable security models.

1.4 Tools Specification

DLVA Specification Figure 1.2 illustrates the input and output of DLVA:

• Input: Let C be a smart contract (in bytecode).

• Output: A 29-dimensional binary vector corresponding to the 29 distinct
vulnerabilities. Each element in the vector indicates:

– 1: Contract C is vulnerable to the corresponding vulnerability.

– 0: Contract C is secure from the corresponding vulnerability.

SCooLS Specification Figure 1.3 illustrates the input and output of SCooLS:

• Input: Let C be a smart contract (in bytecode).

• Output: N-dimensional binary vector, where N is the number of functions in
the contract:

10

CHAPTER 1. INTRODUCTION

Figure 1.3: SCooLS Specification.

– 1: Function Fi in C is exploitable for reentrancy, with attack demonstra-
tion.

– 0: Function Fi in C is secure from reentrancy.

1.5 Thesis Organization
This thesis dives into the world of Ethereum smart contracts and their security

flaws by leveraging the power of deep learning. Here is a roadmap to guide you
through the journey:

Chapter 2: Dive into the realm of Ethereum smart contracts – what they are,
how they work, and the vulnerabilities lurking within. We will also equip you with
an understanding of deep learning techniques, so you are ready to see how they
combat these security threats.

Chapter 3: Comprehensive survey of existing solutions – what others have done,
how effective they were, and where they stumbled. This lays the groundwork for
our own innovative approach.

Chapter 4: Introducing DLVA, our deep learning vulnerability analyzer! We
will break down its design, show you how it works, and present the results of its
real-world testing. Buckle up for some exciting experiments!

Chapter 5: What happens when data for training our defender is scarce or
costly? SCooLS to the rescue! We will build a semi-supervised technique for
exploits detection and present an auto-exploit generator to confirm the detected
vulnerabilities are actually real threats.

11

CHAPTER 1. INTRODUCTION

Chapter 6: We will summarize our findings, offer some concluding thoughts, and
even peek into the future, showcasing potential directions for further research in this
ever-evolving field.

12

CHAPTER 2. BACKGROUND

Chapter 2

Background

The purpose of this chapter is to provide a fundamental understanding of
the concepts necessary for comprehending the research presented in this thesis.
To achieve this goal, an overview of Ethereum and smart contracts is presented,
including a detailed explanation of their technical aspects, as well as a discussion
of the common vulnerabilities associated with smart contracts. Furthermore, the
chapter provides a contextual overview of deep learning techniques, thus enabling
readers to better understand the research that will be presented in subsequent
chapters.

2.1 Ethereum
Ethereum is a blockchain-based decentralized platform for developing and execut-

ing smart contracts and decentralized applications (DApps), introduced in 2013 [145],
the network was launched on July 30, 2015. Like Bitcoin, Ethereum is a distributed
ledger technology that utilizes cryptography to maintain a secure and transparent
record of transactions. At its core, the Ethereum blockchain is a decentralized
database that consists of a network of interconnected computers, each of which
contains a copy of the same data. The data is stored in blocks, and each block is
linked to the previous block in a chain-like structure, hence the name “blockchain.”

One of the key differences between Ethereum and Bitcoin is that Ethereum was
designed to be a platform for building decentralized applications, while Bitcoin
was primarily designed to serve as a digital currency. Ethereum’s smart contract
functionality allows developers to create self-executing contracts that can be used to
automate a wide variety of processes and transactions.

13

CHAPTER 2. BACKGROUND

In addition to smart contracts, Ethereum also has its own cryptocurrency, called
Ether (ETH), which serving not only as a means of exchange but also as an economic
incentive for users to contribute computational resources to the network. The smallest
unit of ether is known as wei, which is equivalent to 10-18 ether.

On September 15, 2022, Ethereum successfully completed a significant upgrade
process known as “the Merge,” transitioning its consensus mechanism from proof-of-
work (PoW) to proof-of-stake (PoS). This transition led to a remarkable reduction
in Ethereum’s energy consumption by approximately 99.95%. Ethereum supports
two types of accounts: Externally Owned Accounts (EOAs), which are controlled
by private keys and have no associated code, and Contract Accounts, which are
controlled by smart contracts and have code associated with them [25].

Overall, the Ethereum blockchain provides a secure and decentralized platform
for developers to build and deploy decentralized applications, while also provid-
ing a cryptocurrency that can be used to power these applications and facilitate
transactions on the network.

2.2 Smart Contracts
A smart contract on the Ethereum blockchain is simply a program has a set

of functions paired with some associated data, located at a specific address in the
Ethereum blockchain. Smart contracts have a balance and can be the target of
transactions. However they are not controlled by a user, instead they are deployed
to the network and run as programmed. User accounts can then interact with a
smart contract by submitting transactions that execute a function defined on the
smart contract. They are frequently used to automate the execution of an agreement
without the involvement of a third party (i.e., bank or government). Contracts
used in financial applications, for example, are typically used to manage, collect,
or distribute an asset. Furthermore, its immutability makes it an ideal choice for
storing important data (e.g., ownership, provenance) for notary purposes. Smart
contracts can define rules, like a regular contract, and automatically enforce them
via the code. Smart contracts cannot be deleted by default, and interactions with
them are irreversible. Most Ethereum smart contracts are written in a high-level
language such as Solidity.

14

CHAPTER 2. BACKGROUND

Solidity is an object-oriented, high-level language especially developed for contract
writing, and it is currently the most prominent programming language for developing
smart contracts in Ethereum. The Solidity compiler compiles the source code into
bytecode. Smart contracts on the Ethereum blockchain are stored as bytecode,
a machine-readable instruction set understood by the Ethereum Virtual Machine
(EVM). This means the original code written by the developer (source code) is not
directly visible. Users typically interact with smart contracts through their public
bytecode, which can be difficult to understand without the source code.

In Solidity smart contracts, the fallback function serves a crucial role in exception
handling and unexpected interactions, it is a special function that automatically
executes under two specific conditions:

• Non-existent function call: When a transaction attempts to call a function that
does not exist within the contract, instead of reverting the transaction with
an error, the fallback function takes over. This allows for graceful handling
of invalid function calls, potentially logging the event, sending a message, or
redirecting the transaction to a suitable function.

• Direct Ether transfer: If a transaction sends Ether directly to the contract
without specifying a specific function, the fallback function acts as the entry
point. This enables the contract to receive and process the payment, potentially
updating internal state or performing other actions based on the received Ether.

2.3 Ethereum Virtual Machine
The Ethereum Virtual Machine or EVM is the runtime environment for smart

contracts in Ethereum that runs low-level bytecode and supports a Turing-complete
set of instructions. As shown in Figure 2.1, the EVM follows the Harvard architecture
by separating code and data into four parts: (a) an immutable EVM code, which
contains the smart contract’s bytecode, (b) a mutable but persistent storage to
persist smart contract data across executions, (c) a mutable but volatile memory
that acts as a temporary data storage during execution, and finally (d) a stack that
allows smart contracts to pass arguments to instructions at runtime. Since the smart

15

CHAPTER 2. BACKGROUND

Figure 2.1: Ethereum Virtual Machine (EVM), adapted from ethereum.org

contract bytecode is stored on the blockchain, making it accessible to both regular
users and attackers.

EVM bytecode is represented by a very long hexadecimal number such as
0x6080604052348. . . . EVM bytecode consists of two main parts: deployment byte-
code and runtime bytecode. Deployment bytecode is the binary code that will be
sent to the network for the creation of the smart contract, initializing state variables,
and reading constructor arguments appended at the end of the Ethereum bytecode.
The runtime bytecode is the binary code that will be stored on the blockchain,
contains the runtime logic (i.e., runtime bytecode), and executed whenever the
contract is invoked by transaction.

There is a simple injective relationship between valid hexadecimal bytecode se-
quences and a list of valid human-readable opcodes such as “PUSH1” (encoded
as 0x60), “MSTORE” (0x52), and so forth. Our approach takes these hexadec-
imal bytecode sequences as input and disassembles them into opcode sequences.
Ethereum’s “Yellow Paper” defines the EVM as a variant of a stack machine with
150 distinct opcodes [145]. In Figures 2.2, 2.3, and 2.4, we give examples of these
various representations of programs for reference.

16

CHAPTER 2. BACKGROUND

1 pragma solidity ^0.4.22;
2 contract Bank {
3 mapping(address => uint) private balances;
4 function withdraw() public {
5 uint amount = balances[msg.sender];
6 msg.sender.call{value: amount}("");
7 balances[msg.sender] = 0;
8 }
9 }

Figure 2.2: Sample representation of Solidity source code

1 608060405234801561001057600080fd5b50610160806100206000396000f3fe60806040523480156
2 1001057600080fd5b506004361061002b5760003560e01c80633ccfd60b14610030575b600080fd5b
3 61003861003a565b005b60008060003373ff1673fff
4 fffffffffffffffffffffffffffffffffffff1681526020019081526020016000205490503373ffff
5 ffffffffffffffffffffffffffffffffffff168160405180600001905060006040518083038185875
6 af1925050503d80600081146100db576040519150601f19603f3d011682016040523d82523d600060
7 2084013e6100e0565b606091505b50505060008060003373fffffffffffffffffffffffffffffffff
8 fffffff1673ff168152602001908152602001600020
9 819055505056fea2646970667358221220983da010e57932d9b85216b1c0b75842ec7e5b30f3cf702

10 fcf9c43d8c2d6d3cc64736f6c63430007000033

Figure 2.3: Sample representation of EVM bytecode

1 PUSH1 0x80 PUSH1 0x40 MSTORE CALLVALUE DUP1 ISZERO PUSH2 0x10 JUMPI PUSH1 0x0
2 DUP1 REVERT JUMPDEST POP PUSH2 0x160 DUP1 PUSH2 0x20 PUSH1 0x0 CODECOPY PUSH1
3 0x0 RETURN INVALID PUSH1 0x80 PUSH1 0x40 MSTORE CALLVALUE DUP1 ISZERO PUSH2
4 0x10 JUMPI PUSH1 0x0 DUP1 REVERT JUMPDEST POP PUSH1 0x4 CALLDATASIZE LT PUSH2
5 0x2B JUMPI PUSH1 0x0 CALLDATALOAD PUSH1 0xE0 SHR DUP1 PUSH4 0x3CCFD60B EQ PUSH2
6 ...
7 POP JUMP INVALID LOG2 PUSH5 0x6970667358 0x22 SLT KECCAK256 SWAP9 RETURNDATASIZE
8 LOG0 LT 0xE5 PUSH26 0x32D9B85216B1C0B75842EC7E5B30F3CF702FCF9C43D8C2D6D3CC
9 PUSH5 0x736F6C6343 STOP SMOD STOP STOP CALLER

Figure 2.4: Sample representation of EVM opcodes

The aforementioned representations of smart contract as source code, bytecode,
and opcode are text and we must convert smart contract to numerical feature vectors
because sophisticated machine learning models typically work with numerical feature
vectors rather than text. The proposed learning methods in this thesis automatically
learns vulnerability features of smart contract from the control flow graph extracted
from the runtime bytecode.

17

CHAPTER 2. BACKGROUND

Figure 2.5: Smart Contract Control Flow Graph (adapted from [37]).

In program analysis, a control-flow graph (CFG) is a graphical representation
of the flow of control within a program. It is a directed graph that represents the
order in which the instructions of a program are executed. The nodes in the graph
represent basic blocks, which are sequences of instructions that have no branching or
looping. The edges between the nodes represent the control flow between the basic
blocks, which can be conditional or unconditional, as shown in Figure 2.5.

The control-flow graph can be used to analyze and understand the behavior of a
program. For example, it can be used to identify potential bugs or vulnerabilities in
the code, to optimize the performance of the program, or to verify that the program
meets certain security or safety requirements.

18

CHAPTER 2. BACKGROUND

To construct a control-flow graph, the program is first divided into basic blocks.
Each basic block starts with the first instruction in the program or the target of
a branch or jump instruction, and ends with the last instruction before the next
branch or jump instruction. The basic blocks are then connected by edges that
represent the control flow between them.

The control-flow graph can be analyzed using various techniques, such as data
flow analysis, symbolic execution, or graph neural networks. These techniques use
the graph to reason about the behavior of the program and to identify possible
errors or vulnerabilities. They can also be used to generate test cases or to optimize
the performance of the program. CFG is more useful for analysis than linear
representations of the code because it capture important semantic structures within
the contract.

2.4 Smart Contract Vulnerabilities
Smart contract vulnerabilities refer to security weaknesses or flaws that exist

in the runtime bytecode of a smart contract. Smart contracts are self-executing
programs that run on a blockchain network and are designed to automate the
execution of a contract agreement between two or more parties. After deployment
on the chain, the smart contract becomes immutable, and any vulnerabilities cannot
be directly patched. Due to their decentralized nature and the fact that smart
contracts are executed automatically, any vulnerabilities or bugs in their code can
have severe consequences, including financial losses or the compromise of sensitive
information.

In the past years, many attacks on deployed smart contracts have been reported
[15]. This includes many well-known vulnerabilities including “reentrancy-eth” (the
DAO hack, USD 50 million in losses [95, 121]) and “suicidal” (the Parity bug, USD
280 million in losses [129]). Some well-known vulnerabilities are tagged with Smart
contract Weakness Classification (SWC) numbers for ease of reference [111].

Finding vulnerabilities in smart contracts is crucial to ensuring their secure
execution. However, there is currently no standardized definition or description
of these vulnerabilities. To address this, we rely on the vulnerability descriptions
provided by Slither (version 0.8.0, build date: May 7, 2021) [45]. Slither is a widely

19

CHAPTER 2. BACKGROUND

used and accurate tool that can identify a diverse range of vulnerabilities (74 types!)
from source code.

However, only 29 of these vulnerability types have enough examples (at least
200 positive samples) for training our deep learning models. We focus on these 29
types due to the limited data for the remaining ones. This section provides detailed
explanations of each of the 29 vulnerabilities our models target:

1) ⋆ The vulnerability of shadowing-state (SWC-119) in smart contracts is
a potential security vulnerability that arises due to the ambiguous naming
of state variables when inheritance is used. In this scenario, a contract may
inherit from another contract that has a state variable with the same name as
the one defined in the inheriting contract. This can lead to the creation of two
distinct versions of the variable, one accessible from the inheriting contract
and the other from the inherited contract. In more complex contract systems,
this ambiguity can easily go unnoticed and result in unintended consequences,
potentially leading to security breaches. Shadowing state variables can also
occur within a single contract, where multiple definitions exist at the contract
and function level, further exacerbating the risk of unintended behavior.

To mitigate this vulnerability, Solidity developers must be mindful of naming
conventions and ensure that variables are named uniquely across all contracts
and functions.

2) ⋆ The suicidal vulnerability (SWC-106) in smart contracts occurs when the
SELFDESTRUCT instruction is triggered by an arbitrary account, causing the
contract to be destroyed. This vulnerability can arise when a contract includes
a security fallback option that allows it to be destroyed by its owner or trusted
addresses in the event of an emergency, such as a security breach or malfunction.
However, if this functionality is not properly secured and can be triggered
by any arbitrary account, it renders the contract susceptible and potentially
suicidal. Once the SELFDESTRUCT instruction is executed, all remaining Ether
in the contract is sent to a designated address and the contract is permanently
destroyed, leading to loss of data and potentially disrupting the blockchain
network.

20

https://swcregistry.io/docs/SWC-119
https://swcregistry.io/docs/SWC-106

CHAPTER 2. BACKGROUND

To mitigate this vulnerability, developers must ensure that the SELFDESTRUCT

instruction can only be triggered by authorized accounts, typically the contract
owner or a set of trusted addresses. Because failure to address this vulnerability
can have serious consequences, potentially leading to significant financial losses
and reputational damage.

3) ⋆ The uninitialized-state vulnerability (SWC-109) in smart contracts arises
when local storage variables are not initialized properly, resulting in unexpected
storage locations within the contract. This can create intentional or uninten-
tional vulnerabilities that can be exploited by attackers to compromise the
security and integrity of the contract. Uninitialized storage variables can cause
unexpected behavior when they are accessed or modified by other parts of the
contract. In some cases, uninitialized variables may point to storage locations
that contain sensitive data or important functionality, allowing attackers to
manipulate or corrupt the contract’s state.

To mitigate this vulnerability, developers must ensure that all local storage
variables are properly initialized before they are used in the contract.

4) ⋆ The arbitrary-send vulnerability in smart contracts refers to the potential
for malicious actors to exploit unprotected calls to functions that send Ether
to arbitrary addresses. This vulnerability arises due to missing or insufficient
access controls, allowing malicious parties to withdraw some or all Ether from
the contract account. The arbitrary-send vulnerability can be particularly
damaging as it can result in significant financial losses. Malicious actors can
exploit this vulnerability by using unprotected function calls to send Ether to
their own accounts, effectively stealing funds from the contract. In some cases,
attackers may also be able to compromise the contract’s security and execute
further attacks on the network.

To mitigate this vulnerability, developers must implement robust access controls
and ensure that functions that send Ether are protected against unauthorized
access. This can be achieved by implementing proper authentication mech-
anisms, such as requiring specific authorization or permissions to access the
function.

21

https://swcregistry.io/docs/SWC-109

CHAPTER 2. BACKGROUND

5) ⋆ The controlled-array-length vulnerability pertains to functions within
a smart contract that enable direct assignment of an array’s length using a
variable that is controlled by a user, which could potentially be manipulated
by an attacker. This vulnerability arises when there are no proper checks or
validations on the user-controlled variable, allowing malicious actors to tamper
with the length of the array in an unauthorized manner. Such unauthorized
manipulation of array length can result in unexpected behavior, data corruption,
or other security risks within the smart contract. It is crucial for smart contract
developers to implement robust input validation and access control mechanisms
to safeguard against this vulnerability and prevent potential attacks.

6) ⋆ The controlled-delegatecall (SWC-112) vulnerability relates to a specific
type of message call called delegatecall, which is similar to a regular message
call except that the code executed at the target address runs within the context
of the calling contract, with the values of msg.sender and msg.value remain-
ing unchanged. This functionality allows a smart contract to dynamically
load code from a different address during execution. However, calling into
untrusted contracts using delegatecall is highly risky because the code at
the target address is granted complete access to the caller’s balance and can
modify any storage values within the caller’s contract. This presents significant
security risks, as the untrusted contract could potentially manipulate or steal
the caller’s funds, or compromise the integrity of the calling contract’s storage
data. It is critical for smart contract developers to exercise caution when
utilizing delegatecall and thoroughly audit any external code that will be
executed within the context of their contract.

7) ⋆ The reentrancy-eth (SWC-107) vulnerability is associated with the risk
of calling external contracts, as they can potentially manipulate the control
flow. In a reentrancy attack, also known as a DAO or recursive call attack, a
malicious contract invokes a function within the calling contract before the first
invocation of the function has completed, leading to unintended interactions
among different invocations of the function. This type of vulnerability can
result in undesirable behavior, including the potential theft of Ether, as the
malicious contract may repeatedly call back into the calling contract, exploiting

22

https://swcregistry.io/docs/SWC-112
https://swcregistry.io/docs/SWC-107

CHAPTER 2. BACKGROUND

the reentrancy vulnerability to drain Ether from the target contract. Proper
validation of external contracts, appropriate use of locks or mutexes, and
careful management of control flow can help mitigate the risks associated with
reentrancy attacks and prevent unauthorized access to Ether or other critical
resources within a smart contract system.

8) ⋆ The unchecked-transfer vulnerability refers to a scenario where the return
value of an external transfer/transferFrom call is not properly validated
within a smart contract system. Specifically, the return value of a message call
is not checked, and execution continues even if the called contract throws an
exception. This type of vulnerability can result in unexpected behavior in the
subsequent program logic, particularly if the call fails due to accidental error
or is manipulated by an attacker. In such cases, the program may proceed as if
the call succeeded, leading to unintended consequences and potential security
breaches. To mitigate the risks associated with unchecked transfers, developers
should carefully validate the return values of message calls, implement robust
error handling mechanisms.

9) ⋆ The erc20-interface vulnerability pertains to incorrect return values for
ERC20 functions within a smart contract system. Specifically, when a contract
compiled with Solidity version greater than 0.4.22 interacts with these functions,
the execution may fail as the expected return values are missing. To address
this vulnerability, it is crucial to ensure that the appropriate return values and
types are correctly defined for the ERC20 functions. This includes thorough
validation of the return values and types during the development, testing, and
deployment phases of smart contract development. By adhering to proper
return value conventions, developers can prevent potential execution failures
and ensure the reliable functionality of ERC20 token contracts within the
Ethereum ecosystem.

10) ⋆ The incorrect-equality vulnerability, as described in (SWC-132), relates to
the improper use of strict equality in smart contract systems. When contracts
assume a specific Ether balance based on strict equality comparisons, erroneous
behavior may result. To mitigate this vulnerability, it is recommended that

23

https://swcregistry.io/docs/SWC-132)

CHAPTER 2. BACKGROUND

strict equality should not be used to determine if an account has sufficient
Ether or tokens. Instead, contracts should use safe comparison operations that
take into account possible rounding errors and other unpredictable factors that
may affect the accuracy of balance calculations.

11) ⋆ The locked-ether is a vulnerability that affects contracts with a payable
function, but without a corresponding withdrawal mechanism. Such contracts
can accept Ether but are unable to send it out, either because they lack
instructions that send Ether out or because these instructions are not reachable.
As a result, Ether sent to these contracts can become permanently locked,
leading to financial loss for the contract owner and users. The recommended
solution is to either remove the payable attribute or add a withdraw function
to enable the contract to send Ether out when necessary.

12) The mapping-deletion vulnerability refers to a situation where a contract
contains a structure with a mapping, and the contract tries to delete the
structure. However, deleting the structure does not delete the mapping, and
the data in the mapping can still be accessed, potentially allowing an attacker
to breach the contract. To mitigate this vulnerability, it is recommended to
use a lock mechanism instead of deleting the structure. This involves adding
a boolean variable to the structure that can be set to true to disable the
structure, preventing any further use of the mapping data. It is also important
to ensure that all references to the deleted structure are removed from the
contract code to prevent any unintentional use.

13) The shadowing-abstract is the shadowing state variables in abstract con-
tracts can lead to confusion and unintended behavior, as the derived contract
may not behave as intended. Therefore, it is recommended to remove any
state variable shadowing in abstract contracts.

14) The tautology is tautological expressions or contradictions in smart contract
code can lead to unexpected behavior and security vulnerabilities. A tautology
is a logical statement that is always true, while a contradiction is a logical state-
ment that is always false. In the context of smart contracts, such expressions
can lead to erroneous results, causing the contract to behave in unintended

24

CHAPTER 2. BACKGROUND

ways. To avoid such issues, it is recommended to carefully review the code
and identify any instances of tautological expressions or contradictions. Once
identified, the appropriate corrective action can be taken to fix the incorrect
comparison by changing the value type or the comparison itself.

15) The write-after-write vulnerability in smart contracts refers to variables that
are written but never read, resulting in unnecessary or redundant writes. This
can occur when a variable is first assigned to one value and then immediately
reassigned to another value, effectively negating the effect of the first write
operation. To address this issue, it is recommended to review the code and
identify any instances where variables are written multiple times without
being read or where subsequent writes override previous writes without any
meaningful purpose. Such redundant writes can be fixed or removed to optimize
the contract’s efficiency and reduce unnecessary gas costs. This may involve
reevaluating the logic of the contract and ensuring that variable writes are
performed only when necessary and with a clear purpose, avoiding unnecessary
or redundant operations.

16) ⋆ In the constant-function-asm vulnerability, constant/pure/view func-
tions are intended to be read-only functions that do not modify state. However,
if a function is declared as constant/pure/view using assembly code, it may
not be correctly labeled, which can cause issues when called in Solidity 0.5.0 or
later. In particular, a call to a function declared as constant/pure/view uses
the STATICCALL opcode, which reverts in case of state modification. This means
that a call to an incorrectly labeled function may trap a contract compiled
with Solidity 0.5.0 or later. To avoid such issues, it is recommended to ensure
that the attributes of contracts compiled prior to Solidity 0.5.0 are correct.
In particular, functions should be properly labeled as constant/pure/view if
they are intended to be read-only functions that do not modify state. This
can help prevent unexpected behavior and ensure the correct functioning of
the contract.

17) The constant-function-state is vulnerability with functions declared as
constant/pure/view is that they are not supposed to change the state, but

25

CHAPTER 2. BACKGROUND

in some cases they do. This was not strictly enforced prior to Solidity 0.5.0.
Starting from Solidity 0.5.0, a call to a constant/pure/view function uses the
STATICCALL opcode, which reverts in case of state modification. As a result,
a call to an incorrectly labeled function may trap a contract compiled with
Solidity 0.5.0 or later.

18) ⋆ The divide-before-multiply vulnerability where solidity integer division
can truncate the result. Therefore, performing multiplication before division
can avoid loss of precision that might occur due to integer division.

19) ⋆ The reentrancy-no-eth vulnerability refers to a scenario where a contract
function can be called recursively before the initial invocation of the function
completes, potentially leading to unexpected or malicious behavior. This
vulnerability is not specific to Ether transactions and can also occur with other
types of function calls.

To address this vulnerability, the check-effects-interactions pattern can be
applied. This pattern involves first performing all state changes and calculations
before interacting with external contracts or making additional function calls.
By following this pattern, the risk of reentrancy attacks can be mitigated.
Therefore, it is recommended to carefully analyze the code and apply the
check-effects-interactions pattern to prevent reentrancy attacks that don’t
involve Ether.

20) The tx-origin vulnerability refers to the use of tx.origin for authorization,
which can be exploited by a malicious contract if a legitimate user interacts
with the malicious contract. The tx.origin variable contains the address that
originated the transaction, which can be different from the address that actually
sent the transaction. This means that a contract relying on tx.origin for
authorization can be tricked by a malicious contract to perform unauthorized
actions on behalf of the user.

To mitigate this vulnerability, it is recommended to avoid using tx.origin

for authorization. Instead, contracts should use msg.sender to determine the
address that sent the current message. This ensures that only the intended

26

CHAPTER 2. BACKGROUND

user can perform the authorized actions, regardless of whether the transaction
was initiated by a contract or an external account.

21) ⋆ The unchecked-lowlevel vulnerability can pose a security risk, as the
return value of such calls is not checked, which may result in the locking
of Ether in the contract. This issue can be particularly problematic when
low-level calls are used to prevent blocking operations. To mitigate this risk,
it is recommended that developers ensure that the return value of low-level
calls is either checked or logged. By doing so, failed calls can be identified
and appropriate measures can be taken to prevent the locking of Ether in the
contract.

22) ⋆ The unchecked-send (SWC-105) vulnerability: The return value of the
send() function in Solidity is not checked, which can lead to a situation where
the Ether sent is locked in the contract. This can happen when the recipient of
the sent Ether is a contract that has a fallback function which either reverts or
runs out of gas. It is important to note that the send() function should not be
used for critical operations. If it is used to prevent blocking operations, then it
is recommended to log the failed send transactions to detect potential issues.
Therefore, it is crucial to ensure that the return value of the send() function
is checked or logged to prevent Ether from getting locked in the contract.

23) ⋆ The uninitialized-local (SWC-109) vulnerability: Uninitialized local stor-
age variables in Solidity can lead to unexpected behavior, as they may point
to unexpected storage locations in the contract. This can result in unintended
consequences and vulnerabilities in the contract logic. To mitigate this risk,
it is recommended to initialize all variables properly before using them. If a
variable is intended to be initialized to zero, it is important to explicitly set
it to zero during declaration or assignment, as it improves code readability
and reduces the risk of uninitialized variables pointing to unexpected storage
locations.

24) ⋆ The unused-return (SWC-104) vulnerability: In Solidity, when the return
value of an external call is not stored in a local or state variable, it can result
in unintended consequences or vulnerabilities in the contract logic. The return

27

https://swcregistry.io/docs/SWC-105
https://swcregistry.io/docs/SWC-109
https://swcregistry.io/docs/SWC-104

CHAPTER 2. BACKGROUND

values of function calls can contain important data that may be necessary for
further processing or decision-making within the contract. To prevent this
issue, it is recommended to ensure that all return values of function calls are
properly captured and used in the contract logic. This can be achieved by
storing the return values in local or state variables, which can then be utilized
as needed in the contract’s logic or further interactions with other contracts.

25) ⋆ The incorrect-modifier vulnerability: In Solidity, if a modifier does not
execute _ or revert, the execution of the function will return the default value,
which can be misleading for the caller. Therefore, it is important to ensure
that all paths in a modifier execute either _ or revert. This will help to prevent
unexpected behavior and ensure that the function behaves as intended.

26) ⋆ The shadowing-builtin vulnerability: Shadowing built-in symbols using
local variables, state variables, functions, modifiers, or events can lead to
unexpected behavior in Solidity smart contracts. When a symbol is shadowed,
the Solidity compiler may interpret the code in a way that is different from
what the programmer intended. To avoid such issues, it is recommended to
rename any local variables, state variables, functions, modifiers, and events
that could potentially shadow a built-in symbol. By doing so, the code will be
clearer and easier to read, while also reducing the risk of unexpected behavior.

27) ⋆ The shadowing-local vulnerability: Shadowing using local variables that
shadow another component can introduce confusion and ambiguity in Solid-
ity smart contracts. When a local variable has the same name as another
component, such as a function parameter or a state variable, it can lead to
unintended behavior and make the code harder to understand and maintain.
To avoid such issues, it is recommended to rename any local variables that
may shadow another component. By choosing descriptive and unique names
for local variables, the code will be more readable and less prone to confusion.

28) The variable-scope vulnerability: When declaring variables in Solidity, it
is important to ensure that they are declared before they are used. This is
because Solidity allows the use of variables before they are declared, which
can lead to unintended consequences if the variable is declared in another

28

CHAPTER 2. BACKGROUND

scope or at a later time. To prevent this, it is recommended to move all
variable declarations prior to any usage of the variable, and to ensure that
reaching a variable declaration does not depend on some conditional if it is
used unconditionally. This ensures that the variable is properly initialized and
avoids any potential issues related to the variable’s scope.

29) The void-cst vulnerability pertains to the situation where a constructor is
called, but the constructor has not been implemented. This can lead to
unexpected behavior and errors in the contract execution. The recommended
solution is to remove the constructor call. This can be achieved by removing
the instantiation of the contract object or by ensuring that the constructor is
implemented before the contract is deployed.

Example:
To illustrate a reentrancy attack stealing Ether, consider the “Bank.sol” contract

(Figure 2.6). This vulnerable contract contained security flaws similar to those
exploited in the infamous DAO attack, where a “reentrancy-eth” vulnerability
allowed attackers to steal funds. Let’s break down the attack steps:

• The Attacker calls deposit function of “Bank.sol” to register his address in the
contributors list, then invokes withdraw function.

• The “Bank.sol” transfers an amount of money and calls the fallback function
of the Attacker.

• The fallback function of the attacker recursively calls the withdraw function
again, to gain more payment.

• Within an iteration limit, extra ether will be transferred many times to the
“thief.sol” contract.

• The attacker calls steal function to transfer the stolen money from the “thief.sol”
contract to his account.

Available solutions for “reentrancy-eth”:

• Use send() or transfer() to send funds instead of call.value().

29

CHAPTER 2. BACKGROUND

1 // Bank.sol
2 pragma solidity ^0.4.22;
3 contract Bank {
4 mapping(address => uint) balances;
5 constructor() public { }
6 function deposit() public payable {
7 uint amount = balances[msg.sender];
8 balances[msg.sender] = amount + msg.value;
9 }

10 function withdraw() public {
11 if (msg.sender.call.value(balances[msg.sender])()) {
12 balances[msg.sender] = 0;
13 }
14 }
15 }
16

1 // Thief.sol
2 pragma solidity ^0.4.22;
3 import "./Bank.sol";
4 contract Thief {
5 Bank public target;
6 address public owner;
7 constructor(address _target) public {
8 target = Bank(_target);
9 owner = msg.sender;

10 }
11 function collect() public payable {
12 target.deposit.value(msg.value)();
13 target.withdraw();
14 }
15 function() public payable {
16 if (address(target).balance >= msg.value) {
17 target.withdraw();
18 }
19 }
20 function steal() payable public{
21 owner.transfer(address(this).balance);
22 }
23 }
24

1 // truffle console
2 // const bank = await Bank.deployed() // const thief = await Thief.deployed()
3 // const accounts = await web3.eth.getAccounts()
4 // bank.deposit({from:accounts[1], value: 100});
5 // bank.deposit({from:accounts[2], value: 100});
6 // await web3.eth.getBalance(bank.address)
7 // thief.collect({value:10}); // thief.steal();
8

Figure 2.6: Reentrancy Exploit (DAO) Example

30

CHAPTER 2. BACKGROUND

• Change the internal state first and then call external function, and use a mutex
when the external calls are unavoidable.

Due to the complexity of smart contracts, it is possible for developers to inad-
vertently introduce security vulnerabilities into the code. Such vulnerabilities can
be exploited by attackers to steal or manipulate funds or to disrupt the normal
functioning of the DApp. Therefore, it is essential to use tools that can detect
security vulnerabilities in smart contracts and provide developers with the necessary
information to fix them.

2.5 Deep Learning: Methods and Applications
Deep learning is a specific subfield of machine learning, which in turn is a

subfield of artificial intelligence. Figure 2.7 provides a visual representation of
these relationships. Artificial intelligence is the broadest category, encompassing all
systems that exhibit intelligent behavior. Machine learning is a subset of artificial
intelligence that focuses on developing algorithms that can learn from data without
being explicitly programmed. Finally, deep learning is a subfield of machine learning
that is specifically concerned with neural networks and the development of algorithms
that can model complex relationships in data.

One example of the application of deep learning is in the field of medical imaging.
Medical professionals use medical imaging techniques such as X-rays, MRIs, and
CT scans to diagnose diseases and injuries. Analyzing and interpreting these images
can be challenging, as there is often a large amount of visual data to process. Deep
learning algorithms can be trained to recognize patterns and identify anomalies in
medical images, which can assist medical professionals in making diagnoses and
developing treatment plans. This is an example of how deep learning can be used
as a method to implement a machine learning task, which is necessary for the
interpretation of medical images because it is not feasible to explicitly program the
machine to recognize all possible patterns and anomalies.

The primary difference between machine learning and deep learning is in their
algorithms. Machine learning relies on feature engineering, which involves manually
selecting and extracting relevant features from data, whereas deep learning uses

31

CHAPTER 2. BACKGROUND

Figure 2.7: The relationship between artificial intelligence, machine learning, and
deep learning.

32

CHAPTER 2. BACKGROUND

neural networks and multiple layers of data processing to automatically extract
relevant features, as shown in Figure 2.8. Deep learning algorithms can recognize
more complex patterns than machine learning algorithms, which allows them to
achieve higher accuracy in decision-making tasks. Deep learning models can have
dozens or even hundreds of layers, allowing them to learn increasingly complex
representations of the data. Another difference is the amount of data required to
train deep learning models. Deep learning models typically require large amounts of
labeled data to achieve high levels of accuracy, whereas some other machine learning
algorithms can work well with smaller datasets. Finally, deep learning models are
often used for tasks that involve unstructured data, such as images, audio, or text,
whereas other machine learning algorithms are often used for more structured data,
such as numerical or categorical data.

In learning-based model training, the loss function is a mathematical metric
quantifying the discrepancy between a model’s predictions and the actual values. It
acts as a guide during training, providing feedback on the model’s performance. By
minimizing the loss function through optimization algorithms, the model learns to
adjust its internal parameters and improve its predictions. Choosing the appropriate
loss function is crucial for effective training, as it influences the model’s bias-variance
trade-off and sensitivity to outliers.

2.5.1 Learning Methods

There are four main types of learning-based methods:

1) Supervised learning is a type of machine learning where a model learns to
make predictions or classifications based on labeled examples or input-output
pairs. In other words, the model is trained on a dataset where the desired
output or label is already known, and it tries to learn a function that maps
input to output. Here are some examples of supervised learning.

Image classification: In this task, the goal is to classify images into different
categories or classes. For instance, a learning-based model can be trained to
recognize whether an image contains a dog or a cat. The model is trained on
a dataset of labeled images where each image is labeled as either a dog or a
cat. Once the model is trained, it can be used to classify new, unseen images.

33

CHAPTER 2. BACKGROUND

Figure 2.8: Machine Learning vs Deep Learning.

Sentiment analysis: In this task, the goal is to classify text as positive, negative,
or neutral. For example, a learning-based model can be trained to analyze
customer reviews of a product and determine whether the review is positive
or negative. The model is trained on a dataset of labeled reviews where each
review is labeled as either positive or negative. Once the model is trained, it
can be used to classify new, unseen reviews.

Speech recognition: In this task, the goal is to transcribe spoken words into
text. For example, a learning-based model can be trained to transcribe a
person’s spoken words into written text. The model is trained on a dataset of
labeled audio recordings where each recording is transcribed into text. Once
the model is trained, it can be used to transcribe new, unseen audio recordings.

Fraud detection: In this task, the goal is to detect fraudulent transactions.
For example, a learning-based model can be trained to identify credit card
transactions that are likely to be fraudulent. The model is trained on a dataset
of labeled transactions where each transaction is labeled as either fraudulent
or not. Once the model is trained, it can be used to identify new, potentially
fraudulent transactions.

These are just a few examples of supervised learning applications. The key

34

CHAPTER 2. BACKGROUND

idea is that the model is trained on labeled data, and it tries to learn a function
that maps input to output. Once the model is trained, it can be used to make
predictions or classifications on new, unseen data.

2) Unsupervised learning is a type of machine learning where a model is
trained on unlabeled data to discover patterns and relationships without any
pre-existing knowledge of the target variable or output. In other words, the
model learns to identify hidden structures and patterns in the data without
any guidance or supervision. Here are some examples of unsupervised learning.

Clustering: In this task, the goal is to group similar items together based on
their features or characteristics. For example, a learning-based model can be
trained to group customers based on their purchasing behavior or group images
based on their visual features. The model is trained on unlabeled data and
learns to identify similarities and differences between items to create clusters.

Anomaly detection: In this task, the goal is to identify unusual or rare
occurrences in the data. For example, a learning-based model can be trained
to identify fraudulent transactions or detect anomalies in medical images. The
model is trained on unlabeled data and learns to identify patterns that are
different from the norm.

Dimensionality reduction: In this task, the goal is to reduce the number of
features or variables in the data while preserving as much of the original
information as possible. For example, a learning-based model can be trained to
compress high-dimensional data such as images or text into a lower-dimensional
space. The model is trained on unlabeled data and learns to identify the most
important features or dimensions.

Generative modeling: In this task, the goal is to generate new data that is
similar to the original data. For example, a learning-based model can be
trained to generate realistic images, text, or sound. The model is trained on
unlabeled data and learns to capture the underlying distribution of the data
to generate new samples.

The key idea is that the model is trained on unlabeled data and learns to
identify patterns and relationships without any pre-existing knowledge of the

35

CHAPTER 2. BACKGROUND

target variable or output. Once the model is trained, it can be used to generate
new data or identify unusual occurrences in the data.

3) Semi-supervised learning is a type of machine learning where a model is
trained on a combination of labeled and unlabeled data. The model learns
to make predictions or classifications based on the labeled examples while
also discovering patterns and relationships in the unlabeled data. This type
of learning is especially useful when labeled data is limited or expensive to
obtain. Here are some examples of semi-supervised learning.

Text classification: In this task, the goal is to classify text into different
categories or classes. For example, a learning-based model can be trained to
classify news articles into different topics such as sports, politics, or business.
The model is trained on a small set of labeled articles and a large set of
unlabeled articles. The model learns to identify patterns and relationships
in the unlabeled articles to improve its classification accuracy on the labeled
data.

Image segmentation: In this task, the goal is to partition an image into different
regions or objects. For example, a learning-based model can be trained to
segment medical images into different organs or structures. The model is
trained on a small set of labeled images and a large set of unlabeled images.
The model learns to identify similar patterns and relationships in the unlabeled
images to improve its segmentation accuracy on the labeled data.

Speech recognition: In this task, the goal is to transcribe spoken words into
text. For example, a learning-based model can be trained to transcribe a
person’s spoken words into written text. The model is trained on a small set
of labeled audio recordings and a large set of unlabeled recordings. The model
learns to identify common speech patterns and relationships in the unlabeled
recordings to improve its transcription accuracy on the labeled data.

Fraud detection: In this task, the goal is to detect fraudulent transactions.
For example, a learning-based model can be trained to identify credit card
transactions that are likely to be fraudulent. The model is trained on a small
set of labeled transactions and a large set of unlabeled transactions. The

36

CHAPTER 2. BACKGROUND

model learns to identify similar patterns and relationships in the unlabeled
transactions to improve its fraud detection accuracy on the labeled data.

The key idea is to leverage both labeled and unlabeled data to improve the
model’s accuracy and generalization performance. Semi-supervised learning is
especially useful when labeled data is limited or expensive to obtain.

4) Reinforcement learning is a type of machine learning where a model learns
to make decisions by interacting with an environment and receiving feedback
or rewards for its actions. The model learns to maximize its rewards by
exploring different actions and observing the outcomes. This type of learning
is especially useful for tasks where there is no clear right or wrong answer, such
as game playing, robotics, and autonomous driving. Here are some examples
of reinforcement learning.

Game playing: In this task, the goal is to learn to play a game such as chess
or video games. The learning-based model learns to make moves based on the
current state of the game and the expected rewards or penalties for each move.
The model explores different moves and learns from its mistakes to improve
its game playing performance over time.

Robotics: In this task, the goal is to learn to control a robot to perform
a task such as grasping an object, navigating through an environment, or
manipulating an object. The learning-based model learns to control the robot
based on sensory input such as camera images or laser scans and receives
rewards or penalties based on its actions. The model explores different actions
and learns to perform the task more efficiently over time.

Autonomous driving: In this task, the goal is to learn to drive a vehicle
autonomously by making decisions such as accelerating, braking, and steering.
The learning-based model learns to make decisions based on sensory input such
as camera images, lidar scans, and GPS data and receives rewards or penalties
based on its actions such as reaching the destination safely or colliding with
an obstacle. The model explores different actions and learns to drive more
safely and efficiently over time.

37

CHAPTER 2. BACKGROUND

Figure 2.9: Artifical Neural Network.

Dialogue systems: In this task, the goal is to learn to generate natural lan-
guage responses to user queries. The learning-based model learns to generate
responses based on the user’s input and receives rewards or penalties based
on the relevance and coherence of its responses. The model explores different
responses and learns to generate more natural and informative responses over
time.

The key idea is that the model learns to make decisions by interacting with an
environment and receiving feedback or rewards for its actions. Reinforcement
learning is especially useful for tasks where there is no clear right or wrong
answer and the model must learn through trial and error.

2.5.2 The Mechanics of a Basic Neural Network

The basic structure of a deep learning algorithm is a neural network, which
is comprised of interconnected nodes or artificial neurons that communicate with
each other like the human brain. The network is divided into layers, including the
input layer, one or more hidden layers, and the output layer, as shown in Figure 2.9.
During the training process, the neural network takes in input data and processes it
through a series of transformations, with each layer of the network using its own
set of learned parameters to perform its specific computation. These computations
involve adjusting the weights and biases of the connections between the nodes to
minimize the difference between the actual output and the expected output. Deep

38

CHAPTER 2. BACKGROUND

Figure 2.10: Multilayer Perceptron Neural Network.

learning algorithms use a process called backpropagation to adjust the weights and
biases of the network. During this process, the error or loss between the predicted
output and the actual output is calculated and fed back through the network to
update the weights and biases of the connections. This process is repeated until the
error is minimized, and the network is able to make accurate predictions on new
data. Once the network is trained, it can be used to make predictions on new data
by feeding the input data through the network and obtaining the output from the
final layer, as shown in Figure 2.10.

2.5.3 Graph Neural Networks (GNNs)

Graph Neural Networks (GNNs) are a type of neural network that operate on
graph-structured data. A graph is a mathematical representation of a set of objects,
where the objects are represented by nodes (or vertices) and their relationships
are represented by edges, as shown in Figure 2.11. GNNs are designed to learn
representations of nodes and edges in a graph, and to use these representations
to perform various tasks, such as node classification, link prediction, and graph
classification.

The basic building block of a GNN is a graph convolutional layer, which applies
a linear transformation to each node’s features and aggregates information from its
neighbors. This process is repeated for multiple layers to learn increasingly abstract
representations of the graph’s structure. GNNs can also incorporate additional
features, such as edge and node attributes, to further enhance their representational

39

CHAPTER 2. BACKGROUND

Figure 2.11: Graph-structured data.

power. One of the key challenges in designing GNNs is handling the variable size
and connectivity of graphs. Different approaches have been proposed to address
this, including message-passing schemes, graph attention mechanisms, and graph
pooling operations. GNNs have been applied to a wide range of tasks, including
node classification, link prediction, and graph classification. They have shown great
promise in domains such as social networks, chemistry, and recommendation systems,
where data is naturally represented as graphs.

Graph Neural Networks (GNNs) can be applied to a variety of tasks in graph
analysis. Below are some of the types of GNN tasks with examples:

• Graph Classification: This task involves classifying an entire graph into one
of several categories based on its structure or properties. For example, social
network analysis can classify a graph of users and their interactions into
different communities based on common interests or behaviors.

• Node Classification: In this task, the goal is to predict missing node labels in
a graph based on the labels of neighboring nodes. For example, in a citation
network, we can predict the topic of a scientific paper based on the topics of
its citing papers.

40

CHAPTER 2. BACKGROUND

• Link Prediction: This task involves predicting the likelihood of a link between
two nodes in a graph based on the graph’s structure. For example, in a social
network, we can predict the likelihood of two users becoming friends based on
their common interests or mutual friends.

• Community Detection: This task involves dividing nodes into clusters or com-
munities based on their structural similarity. For example, in a co-authorship
network, we can identify groups of researchers who collaborate frequently
based on their publication history.

• Graph Embedding: This task involves mapping graphs into low-dimensional
vectors while preserving the graph’s structure and properties. Graph em-
beddings can be used for downstream tasks such as node classification, link
prediction, and community detection.

• Graph Generation: This task involves learning from the distribution of sample
graphs to generate new graphs that are similar in structure and properties.
Graph generation can be used for applications such as drug discovery, where
new molecular structures need to be generated and evaluated.

In summary, Graph Neural Networks are a type of neural network that can
operate on graph-structured data, and are designed to learn representations of nodes
and edges in a graph. They are built using graph convolutional layers and can
incorporate additional features to enhance their representational power. GNNs have
been shown to be effective for a variety of applications that involve graph-structured
data, including graph classification, node classification, link prediction, community
detection, graph embedding, and graph generation. These tasks have applications in
various fields such as social network analysis, text classification, and drug discovery.

2.6 Evaluation Metrics
The learning-based classification has four possible outcomes: true positives (TP),

true negatives (TN), false positives (FP), and false negatives (FN). We adopted the
evaluation metrics of accuracy, true positive rate (TPR), true negative rate (TNR),
false positive rate (FPR), false negative rate (FNR), F1-score, and area under the

41

CHAPTER 2. BACKGROUND

curve (AUC) scores on the test dataset. We could not use accuracy in (2.1) as the
only metric for evaluation because our datasets are imbalanced (the total number
of vulnerable smart contracts are scarce compared to the non-vulnerable), as the
model could easily achieve high accuracy by labeling all samples as the majority
class (non-vulnerable class) and neglect the minority (vulnerable class). Accuracy
works best if false positives and false negatives have similar cost. In our problem
false negative has dire consequences more than false positive.

Accuracy = True Positives + True Negatives
Total Tested (2.1)

Precision in (2.2) is a metric used in machine learning to evaluate the accuracy
of a model in correctly identifying positive instances. It is calculated as the ratio of
true positives (TP) to the sum of true positives and false positives (FP):

Precision = True Positives
True Positives + False Positives (2.2)

In other words, precision measures the proportion of true positives out of all
instances predicted as positive. A high precision score indicates that the model is
making fewer false positive predictions and is, therefore, more reliable in identifying
positive instances. This metric is particularly important in situations where false
positive predictions are costly, such as in fraud detection.

Recall in (2.3) is another metric used in machine learning to evaluate the
performance of classification models. Recall is also known as sensitivity, hit rate, or
true positive rate (TPR). Recall is calculated as the ratio of true positives (TP) to
the sum of true positives and false negatives (FN):

True Positive Rate (Recall) = True Positives
True Positives + False Negatives (2.3)

Recall measures the ability of the model to correctly identify all positive instances,
regardless of whether it also predicts some false positives. A high recall score indicates
that the model can identify a high proportion of positive instances out of all actual
positive instances. Recall is particularly important in situations where false negative
predictions are costly, such as in disease diagnoses, where a false negative result can
result in a delayed or incorrect treatment.

42

CHAPTER 2. BACKGROUND

False positive rate in (2.4) (also known as probability of false alarm, fall-out)
is a statistical metric that measures the proportion of negative instances that are
incorrectly classified as positive.

False Positive Rate = False Positives
True Negatives + False Positives (2.4)

The value of TPR measures the ability not to miss any vulnerable contract (how
many of the actual positives our model is able to capture through labeling it as
positive and it is true positive), while the value of FPR measures the ability of the
model to reduce false alarms. These metrics help to measure the detection rate of
vulnerable contracts, and calculate the false alarms of mislabeling an innocent con-
tract as vulnerable. The receiver operating characteristic (ROC) curve is frequently
used for evaluating the performance of binary classification algorithms. ROC is
produced by calculating and plotting the true positive rate against the false positive
rate for a single classifier at a variety of thresholds. AUC stands for area under the
ROC curve and represents the degree or measure of separability. AUC tells how
much the model is capable of distinguishing between non-vulnerable and vulnerable
classes1.

The F1 score in (2.5) is a statistical metric that represents the harmonic mean
of precision and recall. It is frequently used as an evaluation metric in both binary
and multi-class classification tasks, as it combines the precision and recall metrics
into a single value that provides insight into model performance.

F1 score = 2 ∗ Precision * Recall
Precision + Recall (2.5)

As such, the F1 score serves as a valuable metric for evaluating the effectiveness
of classification models, allowing for the identification of optimal models that provide
both high precision and recall. Additionally, the F1 score provides a convenient
method for comparing the performance of different models across varying datasets
and problem domains.

1AUC visualization: https://arize.com/blog/what-is-auc/

43

https://arize.com/blog/what-is-auc/

CHAPTER 3. RELATED WORK

Chapter 3

Related work

This chapter delves into the ever-evolving realm of Ethereum smart contract
(SC) analysis tools, conducting a comprehensive survey of their diverse types and
methodical approaches. To accomplish this, we meticulously explored 83 research
papers, tools, and datasets spanning the literature and online resources published
from 2016 to 2023, this comprehensive analysis illuminates the current state of the
art in smart contract security. Beyond simply charting the existing terrain, this
exploration aims to empower developers and researchers with insightful knowledge
on available tools, datasets, and benchmarks, ultimately paving the way for the
development of even more robust and impactful solutions. Our analysis focuses on
four key areas:

1) Static and Dynamic Analysis (SA/DA) Methods for SC: We begin by
exploring well-established static and dynamic analysis (SA/DA) methods for
scrutinizing smart contract code. This includes examining 21 primary studies
and tools that leverage SA/DA techniques to identify vulnerabilities

2) Learning-based Techniques for SC: We then shift focus to the cutting-edge
field of applying machine learning and deep learning (ML/DL) techniques to
smart contract security. Here, we analyze 35 primary studies and tools that
utilize various ML/DL algorithms to automatically detect vulnerabilities in
smart contracts.

3) Learning-based Techniques for PL: To further enrich our understanding,
we draw insights from the application of ML/DL approaches to vulnerability
detection in traditional programming languages (PL) like C/C++, Java, and

44

CHAPTER 3. RELATED WORK

Python. We review 12 primary studies and tools in this space, seeking valuable
parallels and complementary perspectives for smart contract security.

4) Data Sources and Benchmarks for SC: Finally, we turn our attention
to the data resources and benchmarks available for testing and comparing
the performance of smart contract security tools. We assess 15 primary
datasets, evaluating their suitability for rigorous and comprehensive evaluation
of different tools and techniques.

By systematically exploring these four key areas, this chapter not only illuminates
the current state of smart contract security but also charts a valuable roadmap for
future advancements. Understanding the tools and datasets available, the depths
of analysis employed, and the diverse techniques utilized in each area empowers
researchers and developers to build upon existing knowledge and tackle the evolving
challenges of securing these critical blockchain components. This comprehensive
analysis lays the foundation for a future where smart contracts are even more resilient
and reliable, enabling the continued growth and innovation within the blockchain
ecosystem.

3.1 Static and Dynamic Analysis Methods for SC
This section explores various static and dynamic analysis (SA/DA) techniques for

smart contract vulnerability detection, categorized into symbolic execution (SymEx),
fuzzing (Fuz), and static analysis (StAn).

• Symbolic execution (SymEx) is a powerful technique for analyzing the security
of smart contracts. Instead of running a smart contract with concrete data,
symbolic execution uses symbolic parameters to represent the possible inputs.
This allows researchers to explore a wide range of execution paths and uncover
potential vulnerabilities that might be missed by traditional testing methods.

Popular symbolic execution tools like Oyente, Mythril, Maian, Manticore,
Osiris, and teEther leverage this core principle to analyze smart contracts.
These tools typically take the contract and a set of security specifications (e.g.,
predefined rules by experts) as input. They then employ an SMT (Satisfiability

45

CHAPTER 3. RELATED WORK

Modulo Theories) solver to systematically explore all possible execution paths
under different symbolic values. Finally, they generate a human-readable
report highlighting any potential security issues identified, such as the range
of values that could trigger certain vulnerabilities.

However, symbolic execution comes with certain drawbacks:

– Path Explosion: Symbolic execution explores multiple paths through
a program, resulting in a combinatorial explosion of paths, especially
in complex programs with loops, recursive functions, or large inputs.
This can lead to scalability issues, significantly increasing computational
resources and analysis time.

– Path-Insensitivity: Symbolic execution may be path-insensitive, i.e., it
might not cover all possible program paths due to conditional branches or
loops that rely on symbolic values. This could result in missing potential
bugs or vulnerabilities that occur in specific paths.

– Over-approximation and False Positives: In some cases, symbolic exe-
cution might over-approximate the set of possible program behaviors,
leading to false positives or reporting potential issues that are not actual
vulnerabilities.

Despite these drawbacks, researchers continue to work on improving symbolic
execution techniques and addressing these limitations to make it more effective
and scalable for diverse vulnerability analysis scenarios.

• Fuzzing technique (Fuz) offers a powerful approach to smart contract testing
by iteratively generating test cases designed to expose vulnerabilities. This
addresses two key challenges in software testing: limited input range and path
explosion. Popular tools like ContractFuzzer, EthRacer and Confuzzius employ
various methods to generate subsets of test inputs that can reveal vulnerable
paths within the smart contract’s execution.

The process begins with the smart contract as input. A fuzzing iterator acts as
a test case generator, creating new inputs for the fuzzing engine. This engine
often utilizes a blockchain virtual machine to simulate transactions with the

46

CHAPTER 3. RELATED WORK

generated inputs. Each test transaction is executed, and the resulting state
change is fed back to the iterator, influencing the generation of the next test
case. This iterative process continues until the desired number of fuzzing cycles
is completed. Finally, the collected data is analyzed to identify potentially
vulnerable contracts and, if possible, the specific transactions that trigger the
vulnerability.

By systematically exploring a wide range of possible inputs and execution paths,
fuzzing efficiently detects vulnerabilities that might be missed by traditional
testing methods. This makes it a valuable tool for ensuring the security and
robustness of smart contracts.

However, fuzzing comes with certain drawbacks:

– Limited Coverage: While fuzzing explores a broad range of inputs, it
doesn’t guarantee complete code coverage. Certain portions of the code-
base or intricate program paths might remain untested, possibly conceal-
ing hidden vulnerabilities. Fuzzing tends to excel at finding “surface-level”
bugs but struggles with deeper issues, potentially leading to low code
coverage and many false negatives.

– Challenges in Input Generation: The effectiveness of fuzzing heavily relies
on the quality of generated inputs. If the test cases don’t adequately cover
potential vulnerabilities, bugs may go undetected. Crafting effective test
cases requires understanding the specific vulnerabilities being targeted
and tailoring the fuzzing process accordingly.

Despite these drawbacks, fuzzing remains a valuable and widely used technique
in identifying vulnerabilities. Combining fuzzing with other analysis methods
or employing advanced fuzzing techniques (e.g., coverage-guided or hybrid
fuzzing) can help mitigate some of these limitations and improve overall
effectiveness in vulnerability discovery.

• Static analysis technique (StAn) provides a valuable approach for detecting
vulnerabilities in smart contracts through automated analysis of their source
code (e.g., SmartCheck and Slither tools) or bytecode (e.g., Vandal tool). This
process begins with the extraction of relevant information, or facts, from the

47

CHAPTER 3. RELATED WORK

contract’s source code or bytecode. In some cases, additional metadata may
be added to the contract to enhance semantic clarity.

Model construction follows, where the contract is transformed into an interme-
diate representation (IR). This involves the creation of a structured model that
accurately reflects the contract’s behavior, often incorporating manual fact
extraction using techniques such as regular expressions or parsing. A control
flow graph (CFG) is then constructed to represent the contract’s execution
paths.

The analyzer forms the core of the static analysis solution, employing multiple
data sources alongside the intermediate representation. These inputs may
include blockchain transactions, execution traces produced by instrumented
nodes, or vulnerability signatures in the form of formal rules or security
patterns. The culmination of the static analysis process is the generation of a
human-readable report, outlining the identified vulnerabilities and providing
insights into the contract’s security posture.

However, static analysis comes with certain drawbacks:

– Dependency on Expert Rules: The effectiveness of static analysis is
highly dependent on the quality of the comprehensiveness of its rule
sets. Outdated or incomplete rules can lead to missed vulnerabilities,
necessitating continuous updates to keep pace with evolving threats and
attack vectors.

– False Positives: Static analysis tools may report potential vulnerabilities
that aren’t genuine issues, leading to unnecessary time and effort spent
on investigation.

Understanding these limitations is crucial to using static analysis effectively
and considering its complementary techniques to achieve more comprehensive
program analysis.

Having outlined various static and dynamic analysis techniques, along with their
strengths and weaknesses, we now turn to a closer examination of specific tools
within each technique. Figure 3.1 offers a visual overview of 21 primary studies/tools,

48

CHAPTER 3. RELATED WORK

Figure 3.1: Static and Dynamic Analysis for SC in primary studies.

categorized by four key aspects: tool availability (readily available, not available),
dataset availability (publicly available, not available), analysis levels (source code,
bytecode), and analysis techniques (symbolic execution (SymEx), fuzzing (Fuz),
static analysis (StAn)). Table 3.1 further details the corresponding paper references
for each category.

In the subsequent subsections, we will delve into each study in sequence, grouped
by their respective analysis technique category. This systematic approach allows for a
focused and comprehensive exploration of the individual tools and their contributions
to the field.

3.1.1 Symbolic Execution (SymEx) Studies/Tools:

Luu et al. [93] (2016)1 introduced Oyente, a pioneering static analysis tool
specifically designed to detect vulnerabilities in smart contracts. Oyente operates

1Luu et al. [93] (Oyente) is available: https://github.com/oyente/oyente

49

https://github.com/oyente/oyente

CHAPTER 3. RELATED WORK

Metric Category #Studies References
Tool Availability Available 20 [93, 132, 82, 23, 100,

136, 105, 134, 76, 135,
45, 99, 81, 123, 116, 32,
122, 34, 133, 22]

Not Available 1 [78]
Dataset Availability Available 15 [93, 78, 134, 76, 135,

45, 99, 81, 123, 116, 32,
122, 34, 133, 22]

Not Available 6 [132, 82, 23, 100, 136,
105]

Analysis Levels Bytecode 14 [93, 82, 23, 100, 136,
105, 134, 76, 135, 99,
81, 116, 32, 34]

Source code 7 [132, 78, 45, 123, 122,
133, 22]

Analysis Techniques SymEx 10 [93, 82, 100, 105, 134,
135, 99, 32, 122, 22]

Fuz 4 [76, 81, 34, 133]
StAn 7 [132, 23, 136, 78, 45,

123, 116]

Table 3.1: Static and Dynamic Analysis for SC in primary studies.

on the bytecode and state of smart contracts, employing symbolic execution to
analyze control flow paths and identify potential vulnerabilities based on path con-
straints (i.e., conditions that must hold true for a specific execution path). The
paper demonstrates Oyente’s effectiveness in detecting four common vulnerabilities:
transaction-ordering dependence, timestamp dependence, mishandled exceptions,
and reentrancy. Additionally, the authors enhanced the open-source code to address
integer overflow vulnerabilities. As the first of its kind, Oyente made a signifi-
cant contribution to the field of smart contract security, laying the foundation for
subsequent research and development of more advanced static analysis tools.

Krupp et al. [82] (2018)2 introduced teEther, a tool designed to simplify exploit
creation for vulnerable smart contracts based solely on their bytecode representation.
Its exploit generation process comprises five specialized modules: constructing the
contract’s control flow graph (CFG), identifying exploitable execution paths within

2Krupp et al. [82] (teEther) is available: https://github.com/nescio007/teether

50

https://github.com/nescio007/teether

CHAPTER 3. RELATED WORK

the CFG, generating constraints associated with those paths, and finally, generating
the actual exploit code. For constraint resolution, teEther leverages the powerful Z3
constraint solver. In a comprehensive analysis of 38,757 contracts, teEther identified
815 as vulnerable and subsequently generated 1,564 functional exploits targeting
these vulnerable contracts. This impressive outcome highlights the urgency of
prioritizing smart contract security measures and addressing potential vulnerabilities
to prevent real-world exploits and financial losses. Although there is no common type
of vulnerability between teEther and our tools for direct comparison, this highlights
the possibility of complementary insights through diverse analysis approaches.

Mueller et al. [100] (2018)3 introduced Mythril, a powerful tool for analyzing the
security of smart contracts. Mythril uses symbolic execution to identify potential
vulnerabilities. It also incorporates taint analysis and control flow inspection to
enhance its detection capabilities. This allows Mythril to detect 14 vulnerabilities
at the bytecode level, including common issues like reentrancy, integer overflow and
underflow, and timestamp dependencies. Mythril is available as a free open-source
version and a paid version called MyTh, which offers additional features such as
improved scalability, integration with development tools, and more comprehensive
reporting.

Nikolic et al. [105] (2018)4 presented MAIAN, a tool for dynamic analysis of smart
contracts that focuses on identifying vulnerabilities through trace-based analysis.
MAIAN operates by comprehensively analyzing the execution traces of a contract
across multiple invocations, allowing it to pinpoint three distinct categories of
vulnerabilities: greedy contracts, suicidal contracts (formerly self-destructive), and
prodigal contracts. To minimize false positives, MAIAN employs a unique approach:
it deploys the analyzed contracts on a private blockchain and then confirms the
identified vulnerabilities by initiating targeted transactions that exploit the specific
vulnerability type. This innovative validation process strengthens the accuracy of
MAIAN’s findings and sets it apart from other vulnerability detection tools. Notably,
MAIAN’s focus on real-world exploitability inspired the development of SCooLS,
which incorporates a real exploit generator to further validate identified vulnerabilities
on a private blockchain. While both tools validate vulnerabilities through on-chain

3Mueller et al. [100] (Mythril) is available: https://github.com/Consensys/mythril
4Nikolic et al. [105] (MAIAN) is available: https://github.com/ivicanikolicsg/MAIAN

51

https://github.com/Consensys/mythril
https://github.com/ivicanikolicsg/MAIAN

CHAPTER 3. RELATED WORK

execution, they do not directly share vulnerabilities for comparison due to their
differences in analysis methods and targeted vulnerabilities.

Torres et al. [134] (2018)5 introduced Osiris, an advanced static analysis tool
for smart contracts built upon the foundation of Oyente. Specifically designed to
detect integer-related vulnerabilities, Osiris tackles critical security concerns such as
integer overflow, underflow, and type conversion leading to value truncation. Its core
strength lies in the synergistic combination of symbolic execution and taint analysis,
meticulously tailored to pinpoint these prevalent flaws within Ethereum smart
contracts. Compared to existing tools, Osiris boasts a significantly broader spectrum
of bug detection, while simultaneously maintaining a higher level of precision in
its identification process. This enhanced accuracy and comprehensiveness solidify
Osiris’s position as a valuable asset for safeguarding smart contracts against integer-
related vulnerabilities.

Torres et al. [135] (2019)6 introduced HONEYBADGER, a tool utilizing symbolic
execution and specific heuristics, automatically detects smart contract honeypots.
In the first systematic analysis of its kind, HONEYBADGER examined over 2
million smart contracts, uncovering at least 690 deployed honeypots. Analysis of
transactions associated with a subset of these honeypots revealed that 240 users
have fallen victim to them, resulting in a cumulative profit exceeding 90,000 USD for
the creators. This research highlights the prevalence of honeypots and the potential
financial losses they pose to users. We did not benchmark HONEYBADGER due
to the absence of shared vulnerabilities with our tools for comparison.

Mossberg et al. [99] (2019)7 introduced Manticore, a powerful dynamic symbolic
execution framework specifically designed for analyzing smart contracts and binaries.
Unlike other tools that rely on specific execution models, Manticore employs a
platform-agnostic execution engine that can adapt to different environments. It
analyzes smart contracts by simulating their execution through various possible
states, such as function calls and control flow changes. Notably, Manticore sets itself
apart by its ability to analyze multiple contracts simultaneously, offering insights into
complex interactions and dependencies between them. Inspired by this capability,

5Torres et al. [134] (Osiris) is available: https://github.com/christoftorres/Osiris
6Torres et al. [135] (HONEYBADGER) is available: https://github.com/christoftorres/

HoneyBadger and https://honeybadger.uni.lu/
7Mossberg et al. [99] (Manticore) is available: https://github.com/trailofbits/manticore

52

https://github.com/christoftorres/Osiris
https://github.com/christoftorres/HoneyBadger
https://github.com/christoftorres/HoneyBadger
https://honeybadger.uni.lu/
https://github.com/trailofbits/manticore

CHAPTER 3. RELATED WORK

we have designed our tools with two modes: a single mode for individual contract
analysis and a batch mode for analyzing multiple contracts concurrently.

Chen et al. [32] (2021)8 introduced DefectChecker, a symbolic execution to
pinpoint eight smart contract defects directly within the bytecode, bypassing the
need for source code analysis. This direct bytecode analysis offers several advantages,
including potentially uncovering vulnerabilities missed by traditional source-code-
based methods. The authors craft eight distinct rules, each tailored to exploit
the signature of a specific contract defect. These rules leverage the CFG, stack
event, and identified features to pinpoint the presence of vulnerabilities within the
bytecode. This rule-based approach offers both precision and efficiency. However,
one noteworthy aspect of DefectChecker involves its exhaustive path exploration.
It considers all potential execution paths, even those seemingly unreachable due
to conditional expressions consistently evaluating to false. While this ensures
comprehensive vulnerability detection, it may also lead to false positives. In cases
where such unlikely paths trigger the defect-specific rules, the tool might flag non-
existent vulnerabilities. Notably, DefectChecker currently lacks readily available
instructions for use. The authors responded to our inquiries, and clarified that the
tool is specifically designed for use with the Solidity compiler version v0.4.25 and
EVM version 1.8.14. Running the tool with higher versions may lead to issues, so
users should be aware of these compatibility limitations.

So et al. [122] (2021)9 introduced SMARTEST, a novel approach to symbolic
execution for smart contracts that focuses on identifying vulnerable transaction se-
quences. It employs a unique hybrid strategy that combines symbolic execution with
a vulnerability-aware language model. This model prioritizes program paths during
symbolic execution based on their likelihood of leading to vulnerabilities, improving
efficiency and focusing on exploit-relevant areas. SMARTEST autonomously learns
this vulnerability knowledge by analyzing a corpus of training transaction sequences
extracted from known vulnerable contracts through unguided symbolic execution.
This training process allows it to establish a probability distribution over potential
vulnerable sequences. In our attempts to utilize VERISMART for benchmarking

8Chen et al. [32] (DefectChecker) is available: https://github.com/Jiachi-Chen/DefectCh
ecker

9So et al. [122] (SMARTEST) is available: http://prl.korea.ac.kr/smartest

53

https://github.com/Jiachi-Chen/DefectChecker
https://github.com/Jiachi-Chen/DefectChecker
http://prl.korea.ac.kr/smartest

CHAPTER 3. RELATED WORK

purposes, we encountered installation and configuration challenges. Unfortunately,
our efforts to contact the authors for guidance did not yield a response before
this writing. Consequently, we were unable to incorporate VERISMART into our
evaluation.

Bose et al. [22] (2022)10 introduced SAILFISH, a scalable system designed to
automatically detect state-inconsistency bugs in smart contracts source code. SAIL-
FISH stands apart from other tools by employing a hybrid strategy that combines
efficient exploration with precise symbolic evaluation. In the first phase, EXPLORE,
SAILFISH performs a lightweight analysis to identify potentially vulnerable code
paths. This reduces the computational burden compared to full symbolic analysis,
making SAILFISH scalable for analyzing large numbers of contracts. In the second
phase, REFINE, SAILFISH applies its innovative value-summary analysis (VSA)
to capture the global state of the contract across its storage variables. This VSA
efficiently generates comprehensive constraints on possible contract states, which are
then fed to a symbolic evaluator. This combined approach significantly reduces false
positives compared to traditional methods, leading to highly accurate bug detection
in SAILFISH. In our benchmarking, SAILFISH exhibited promising performance in
terms of scalability and accuracy. However, we encountered some exceptions due to
SAILFISH’s current implementation relying on an older version of Slither that is not
fully compatible with recent Solidity updates. This compatibility issue necessitates
further development and updates to the tool to maintain its effectiveness as Solidity
languages evolve.

3.1.2 Fuzzing (Fuz) Studies/Tools:

Jiang et al. [76] (2018)11 introduced ContractFuzzer, a pioneering tool that
leverages fuzz testing to uncover vulnerabilities in smart contracts. Unlike traditional
black-box fuzzing approaches, ContractFuzzer takes advantage of the contract’s
ABI specification interface. This interface defines the functions and data structures
exposed to the outside world. ContractFuzzer analyzes this specification to generate
fuzzed inputs that adhere to the specific syntax and semantics of the contract

10Bose et al. [22] (SAILFISH) is available: https://github.com/ucsb-seclab/sailfish
11Jiang et al. [76] (Contractfuzzer) is available: https://github.com/gongbell/ContractFuzz

er

54

https://github.com/ucsb-seclab/sailfish
https://github.com/gongbell/ContractFuzzer
https://github.com/gongbell/ContractFuzzer

CHAPTER 3. RELATED WORK

functions. Furthermore, ContractFuzzer employs targeted defect oracles to identify
different vulnerability types with high precision. These oracles define specific patterns
within the contract’s execution that signify vulnerabilities like reentrancy, timestamp
dependency, or transaction order dependency. For instance, to detect reentrancy,
ContractFuzzer crafts a dedicated attack contract. When invoked on the target
contract, this attack contract attempts to trigger the reentrancy flaw and confirm
its presence. This targeted approach significantly reduces false positives. In our
research, we evaluated the performance of DLVA and SCooLS, our smart contract
analysis tools, alongside recent fuzzers like ConFuzzius. This comparative analysis
allowed us to assess the strengths and weaknesses of different approaches to smart
contract security analysis, ultimately highlighting the complementary benefits of
fuzzing techniques like ContractFuzzer.

Kolluri et al. [81] (2019)12 introduced EthRacer, a powerful tool for automatically
detecting Event Order (EO) bugs. Unlike other tools requiring user-provided hints,
EthRacer analyzes contracts directly on Ethereum bytecode, making it user-friendly
and scalable. EthRacer’s core mission is to determine whether modifying the
sequence of events within a contract alters its final outputs. If different outputs
emerge under rearranged event orders, the contract is flagged as exhibiting an EO
bug (EO-unsafe). Conversely, contracts unaffected by event reordering are classified
as EO-safe. This analysis leverages a unique combination of symbolic execution
and randomized fuzzing of event sequences. To optimize its search space, EthRacer
utilizes the Happens-Before relation, a concept defining causal dependencies between
events. This prevents the tool from wasting time on irrelevant or impossible event
reorderings. Our benchmarks do not shard vulnerabilities directly comparable to
EthRacer’s capabilities.

Choi et al. [34] (2021)13 introduced SMARTIAN, a smart contract fuzzing tool
that leverages a unique combination of SA/DA to optimize its seed generation and
management. This hybrid approach enhances the effectiveness of the fuzzing process
and ultimately boosts the detection of vulnerabilities. In the initial stage, SMAR-
TIAN employs static analysis to examine smart contract bytecode. This analysis
predicts promising transaction sequences that are likely to uncover vulnerabilities

12Kolluri et al. [81] (EthRacer) is available: https://github.com/aashishkolluri/Ethracer
13Choi et al. [34] (SMARTIAN) is available: https://github.com/SoftSec-KAIST/Smartian

55

https://github.com/aashishkolluri/Ethracer
https://github.com/SoftSec-KAIST/Smartian

CHAPTER 3. RELATED WORK

during fuzzing. It further identifies specific constraints that each transaction should
adhere to, ensuring focused exploration of the contract’s state space. This valuable
information lays the foundation for the fuzzing phase, informing the creation of
an initial seed corpus of high-quality inputs. Throughout the fuzzing campaign,
SMARTIAN continuously performs a lightweight dynamic data-flow analysis. This
analysis monitors the execution of generated inputs, observing how data flows
through the contract. By analyzing these data-flow patterns, SMARTIAN gathers
crucial feedback that guides the fuzzing process in real-time. This feedback helps
prioritize promising paths and avoid unproductive exploration, leading to a more
efficient and effective vulnerability discovery process.

Torres et al. [133] (2021)14 introduced ConFuzzius, a hybrid fuzzer that combines
the strengths of symbolic execution and fuzzing to uncover vulnerabilities in smart
contracts. Unlike traditional fuzzers, ConFuzzius leverages symbolic taint analysis
to track the flow of information through the contract and generate path constraints
based on tainted inputs. These constraints represent the conditions that must be
met for the fuzzer to reach specific parts of the code. When the fuzzer encounters
a challenging contract condition that blocks its progress, ConFuzzius activates a
constraint solver. This solver attempts to find concrete values that satisfy the
constraints, allowing the fuzzer to bypass the obstacle and explore new paths
in the code execution. The solutions generated by the solver are then added to
a mutation pool, which serves as a reservoir of potential inputs for the fuzzer to
explore further. Furthermore, ConFuzzius utilizes dynamic data dependency analysis
to identify relationships between variables and transactions within the contract.
This information is then used to generate sequences of transactions that are more
likely to trigger specific contract states where bugs might be hidden. This targeted
approach significantly increases the efficiency and effectiveness of the fuzzing process
compared to purely random fuzzing techniques.

14Torres et al. [133] (ConFuzzius) is available: https://github.com/christoftorres/ConFuz
zius

56

https://github.com/christoftorres/ConFuzzius
https://github.com/christoftorres/ConFuzzius

CHAPTER 3. RELATED WORK

3.1.3 Static Analysis (StAn) Studies/Tools:

Tikhomirov et al. [132] (2018)15 presented SmartCheck, a static analysis tool
designed to detect potential vulnerabilities in Solidity smart contracts. SmartCheck
operates by employing a syntactic pattern recognition approach. It first translates
Solidity code into an XML-based syntax tree, creating a structured representation of
the code’s elements and relationships. Vulnerabilities are then defined using XQuery
path expressions, a powerful query language specifically designed for navigating
XML data structures. These expressions enable SmartCheck to efficiently search for
specific vulnerability patterns within the XML tree, pinpointing potential security
flaws within the code. This technique offers a lightweight and targeted approach
to vulnerability identification, focusing on the structural elements of the code that
often signal security issues. Notably, SmartCheck is able to detect 21 vulnerabilities
in Solidity contracts, but its project has been deprecated since 2020, and the analysis
may work incorrectly for Solidity versions starting with 0.6.0 as mentioned in its
repository.

Brent et al. [23] (2018)16 introduced Vandal, a comprehensive security analysis
tool for smart contracts bytecode. Vandal’s core strength lies in its sophisticated
analysis pipeline. This pipeline translates low-level bytecode into a higher-level
format that facilitates efficient vulnerability detection through symbolic execution
and logic-based analysis. The pipeline begins by retrieving the contract’s bytecode
from the blockchain and transforms it into a series of opcode instructions. Next,
the decompiler analyzes these instructions and captures the contract’s logic as
relationships between data and control flow, revealing potential vulnerabilities like
reentrancy and unchecked-send issues based on predefined logic patterns. Vandal’s
ability to analyze bytecode of smart contracts makes it a promising tool for devel-
opers, auditors, and researchers. However, during our exploration, we encountered
difficulties installing Vandal due to the lack of readily available instructions. Despite
contacting the authors, we haven’t received a response at the time of writing. This
lack of user support currently presents a barrier to wider adoption of the tool, but
its functionality holds value for those able to overcome this hurdle.

15Tikhomirov et al. [132] (SmartCheck) is available: https://github.com/smartdec/smartche
ck

16Brent et al. [23] (Vandal) is available: https://github.com/usyd-blockchain/vandal

57

https://github.com/smartdec/smartcheck
https://github.com/smartdec/smartcheck
https://github.com/usyd-blockchain/vandal

CHAPTER 3. RELATED WORK

Tsankov et al. [136] (2018)17 introduced Securify, a scalable, fully automated
analyzer for Ethereum smart contracts that assesses their safety or unsafety based on
user-defined security properties. Securify operates at the bytecode level, extracting
precise semantic details from the code through a symbolic analysis of its depen-
dency graph. These semantics, expressed in Datalog syntax, capture the contract’s
behavior and internal relationships. Securify then cross-references these extracted
semantics against predefined security property rules categorized into compliance
and violation modes. This enables it to verify the contract’s adherence to the
desired security properties, effectively detecting potential vulnerabilities and unsafe
behaviors. Notably, Securify requires the user to specify the Solidity version before
building the tool, hindering its applicability in benchmarking scenarios involving large
datasets with contracts written in various Solidity versions. Due to this limitation,
Securify was not included in the current benchmarking process, as the datasets under
consideration contain thousands of contracts with diverse Solidity versions, making
it impractical.

Kalra et al. [78] (2018) introduced ZEUS, an automated formal verification tool for
smart contracts. ZEUS translates Solidity source code into the LLVM intermediate
language, a format that facilitates efficient analysis. Employing the eXtensible Access
Control Markup Language (XACML), ZEUS constructs customized verification rules
atop this representation. These rules are specifically designed to detect various
security vulnerabilities, enabling ZEUS to assess the security posture of the target
smart contract throughout the formal verification process. While the tool itself is
currently not available for public benchmarking, the authors released a benchmark
of seven vulnerabilities, which we discuss further in the benchmarking section.

Feist et al. [45] (2019)18 developed Slither, a static analysis framework dedi-
cated to comprehensively detecting vulnerabilities in smart contract source code.
Slither operates at the source code level, performing both lexical and syntactic
analyses. Slither leverages abstract syntax trees (ASTs) to construct crucial code
representations like inheritance graphs, control flow graphs, and contract expressions.
Furthermore, Slither introduces an intermediate language called SlitherIR, which
serves as the platform for all static program analysis operations. One defining feature

17Tsankov et al. [136] (Securify) is available: https://github.com/eth-sri/securify2
18Feist et al. [45] (Slither) is available: https://github.com/crytic/slither

58

https://github.com/eth-sri/securify2
https://github.com/crytic/slither

CHAPTER 3. RELATED WORK

of Slither is its active development and frequent updates. While the paper by Feist et
al. reported Slither’s ability to detect 28 vulnerabilities, the current version boasts an
impressive repertoire of 74 vulnerability types. This continually expanding spectrum
makes Slither a powerful tool for identifying a wide range of security flaws in smart
contracts. Another advantage of Slither lies in its efficiency. Its analysis speed
surpasses other static analyzers, with contracts typically taking only 2-3 seconds to
process. This rapid analysis makes Slither an ideal choice as a “supervising oracle”
for labeling large datasets. Slither is employed to label the datasets mentioned in
references [98, 150, 127], providing a combination of thoroughness and effectiveness
in identifying vulnerabilities. We use Slither to label two datasets [9, 8] for DLVA’s
training.

So et al. [123] (2020)19 introduced VERISMART, a dedicated arithmetic safety
verifier for Ethereum smart contracts source code. Notably, it leverages an algo-
rithmic approach to automatically identify transaction invariants. These invariants
represent properties that hold true under any possible transaction order, enabling
VERISMART to analyze contracts exhaustively without individually exploring every
program path. This contrasts with traditional methods that often require manual
effort to define invariants, making VERISMART more automated and potentially
scalable. Unfortunately, our attempts to install and benchmark VERISMART were
unsuccessful. Despite reaching out to the authors for guidance, we have not yet
received a response. Therefore, we are unable to provide a comprehensive evaluation
of its performance compared to other safety analyzers.

Schneidewind et al. [116] (2020)20 introduced eThor, a sound static analysis tool
for smart contracts that guarantees the absence of the single-entrancy vulnerabilities.
eThor works by translating the low-level bytecode of smart contracts into logical
relationships expressed as Horn clauses. These clauses capture the contract’s behavior
and allow eThor to formulate reachability queries about security and functional
properties. Reachability queries ask whether certain states can be reached during
contract execution, and eThor uses the Z3 solver to answer them. eThor is designed
to be sound in detecting a specific vulnerability (e.g. single-entrancy), this guarantee
comes with the trade-off of focusing on a single vulnerability type and at the

19So et al. [123] (VERISMART) is available: http://prl.korea.ac.kr/verismart
20Schneidewind et al. [116] (eThor) is available: https://secpriv.wien/ethor/

59

http://prl.korea.ac.kr/verismart
https://secpriv.wien/ethor/

CHAPTER 3. RELATED WORK

cost of potentially raising many false alarms due to its formal constraints. Our
experimentation on eThor discovered a significant number of false positives when
compared against a ground truth based on SWC-107. Moreover, eThor considers any
contract containing a DELEGATECALL or CALLCODE opcode to be out of scope;
in practice, this eliminates many important examples.

3.2 Learning-based Techniques for SC
This section delves into different machine learning (ML) and deep learning (DL)

methods used in smart contract vulnerability detection. Three dominant paradigms
in learning-based techniques—machine learning (ML), sequential deep learning (Seq.
DL), and graph deep learning (Graph DL)—stand out in their application to the
detection of vulnerabilities in smart contracts, each bringing distinct characteristics
to the fore.

• Machine learning (ML) constitutes a vast domain involving algorithms and
statistical models enabling systems to learn from data and make decisions
sans explicit programming. Within smart contract vulnerability detection, ML
relies heavily on manual feature engineering, wherein relevant attributes are
manually extracted from contract code or related data. Subsequently, these
features are employed by diverse algorithms like decision trees (DT), support
vector machines (SVM), or random forests (RF) to identify vulnerabilities
through learned data patterns.

• Deep learning (DL), a subset of ML, centers on learning data representations
through hierarchical layers in neural networks—artificial neural networks. In
the sphere of smart contract vulnerability detection, DL branches into two
categories: sequential deep learning (Seq. DL) and graph deep learning (Graph
DL).

– Sequential deep learning (Seq. DL) effectively processes sequential tokens
prevalent in smart contract code. Models such as Recurrent Neural Net-
works (RNNs), Long Short-Term Memory networks (LSTMs), or Gated
Recurrent Units (GRUs) are commonly employed in DL for analyzing text
token sequences in natural language processing. These models can capture

60

CHAPTER 3. RELATED WORK

dependencies and patterns within contract code, aiding in identifying
potential vulnerabilities.

– Graph deep learning (Graph DL) delves into analyzing complex inter-
connectedness. Techniques like Graph Neural Networks (GNNs) enable
the extraction of insights from intricate network structures. This makes
Graph DL well-suited for analyzing the control flow graph of smart
contracts, where entities (functions, variables) and relationships (calls,
dependencies) form a complex graph/network. By comprehending these
intricate connections, Graph DL can uncover vulnerabilities that might
evade other detection approaches.

The majority of ML/DL learning-based solutions for smart contract vulnerability
detection rely on supervised learning, requiring a substantial dataset of labeled
smart contract examples. These methods typically follow a multi-step workflow:

1) Data Collection: Building a robust vulnerability detection model starts with
gathering relevant data. This includes both vulnerable and non-vulnerable
smart contracts, serving as positive and negative examples for the model to
learn from. Manual labeling of vulnerabilities is often crucial, though static
analyzer outputs can also contribute to the labeling process.

2) Data Representation: Once collected, the data needs to be transformed into
a format suitable for ML/DL models. This involves choosing an appropriate
representation, such as graphs, trees, or token sequences, that captures the
essential structure and semantics of the smart contracts.

3) Embedding: To bridge the gap between symbolic code and numerical rep-
resentation, the chosen representation is further converted into vectors or
embeddings. These embeddings capture the complex relationships and fea-
tures within the smart contracts, allowing the models to process and analyze
them effectively.

4) Model Selection and Architecture Design: Choosing the right ML/DL model
is critical for success. The optimal choice depends on the specific vulnerability
detection task. From simple ML algorithms like Support Vector Machines

61

CHAPTER 3. RELATED WORK

(SVM) and Random Forests (RF) to sequential DL architectures like Convolu-
tional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs), or
even more advanced DL options like Graph Neural Networks (GNNs), a wide
range of models can be considered. The model architecture is then designed
to extract relevant features and patterns from the embedded data.

5) Training: The core of the process, training involves feeding the labeled data
into the chosen model. The model iteratively learns from the data, adjusting
its internal parameters to minimize prediction errors. Optimization techniques
like gradient descent guide this learning process.

6) Evaluation and Validation: After training, the model’s performance is rigor-
ously evaluated on a separate dataset unseen during training. Metrics like
accuracy, precision, recall, false alarm rate, and F1 score assess the model’s
ability to correctly identify vulnerabilities. Additionally, validating the model
against real-world vulnerabilities further strengthens its practical applicability.
Later, after meticulously training and internally evaluating DLVA, we will
take further step of assessing its performance on four independent benchmarks
unseen by the model during training.

By following these steps, ML/DL models can be effectively leveraged to detect
vulnerabilities in smart contracts, enhancing the security of blockchain applications
and the broader ecosystem. However, they are not without limitations:

• Supervised Learning Dependence: A major drawback of supervised learning
lies in its reliance on vast amounts of labeled training data. Acquiring such
data can be a costly and time-consuming endeavor, especially for niche ar-
eas like smart contract vulnerabilities. Furthermore, labeling data can be
subjective and prone to errors, potentially leading to biased models with
compromised accuracy. This necessitates exploring alternative strategies like
semi-supervised learning, which leverages both labeled and unlabeled data, to
overcome data scarcity and labeling challenges (Our SCooLS introduces an
interesting approach using semi-supervised learning to solve this limitation).

62

CHAPTER 3. RELATED WORK

• Computational Cost: Training complex ML/DL models can be computationally
expensive, requiring significant resources and infrastructure. This can pose
challenges for smaller scale projects or resource-constrained environments.

• Explainability and Interpretability: The complex nature of ML/DL algorithms
can make their decision-making process opaque. This lack of interpretability
hinders developers’ ability to understand why a specific vulnerability was
flagged and how to effectively address it. Efforts are underway to develop
more transparent models that provide insights into their reasoning, but this
remains an ongoing challenge.

Leveraging machine learning and deep learning (ML/DL) models presents a
powerful approach to vulnerability detection in smart contracts. These models offer
several compelling advantages, which significantly enhance their suitability for this
task.

• Automation: The ML/DL models ability to automate vulnerability detection
holds immense value. ML/DL models can autonomously scan and analyze
vast codebases, identifying potential vulnerabilities without requiring human
involvement. This automation drastically accelerates the detection process,
allowing developers to address security concerns much faster.

• Performance: ML/DL models demonstrate impressive performance in terms
of analysis speed. Their capacity to process and analyze massive datasets in
parallel enables them to generate vulnerability predictions rapidly, dramatically
reducing the time needed to secure smart contracts. This efficiency is crucial in
the fast-paced world of blockchain, where prompt vulnerability identification
can prevent costly exploits and safeguard user trust.

By combining these strengths, ML/DL models empower developers to continuously
secure their smart contracts with a high degree of efficiency and accuracy. This paves
the way for a more robust and resilient blockchain ecosystem, where innovation and
adoption can flourish with greater confidence.

Having explored the landscape of various machine and deep learning techniques
for vulnerability detection, along with their benefits and limitations, we delve deeper

63

CHAPTER 3. RELATED WORK

into specific tools within each category. Figure 3.2 provides a comprehensive visual
overview of 35 primary studies and tools, classified based on four key aspects:
tool and dataset availability (indicated by “Available*” with the asterisk denoting
potential availability of some studies upon request), analysis levels (“Source code*”
encompassing both source code and/or potential alternatives like transactions or
account data), and analysis techniques (distinguished by machine learning (ML),
sequential deep learning (Seq. DL), and graph deep learning (Graph DL)). Table 3.2
further details the corresponding paper references for each category.

The upcoming subsections will delve into each study sequentially, grouped by
their corresponding analysis technique category. This methodical approach ensures
a focused and comprehensive exploration of individual tools and their contributions
within the field of smart contracts vulnerability detection.

3.2.1 Machine Learning (ML) Studies/Tools:

Gao et al. [50, 49, 51] (2019, 2020)21 proposed SMARTEMBED, an automated
tool that harnesses code embedding techniques and similarity analysis to identify
vulnerabilities and code clones in Solidity smart contracts. This approach, applicable
for clone detection, bug detection, and contract validation, targets nine specific
vulnerabilities, including overflow, honeypot, and reentrancy. SMARTEMBED
functions by first converting source code tokens into numerical vectors using FastText.
These vectors are then aggregated into single contract embeddings and stored in
a database. Notably, a separate bug database stores embeddings derived from 63
manually labeled buggy statements across 52 contracts. This database, however,
might suffer from limited diversity, potentially leading to missed vulnerabilities not
present in the training data. During prediction, new contracts are embedded and
compared against the bug database. If similarities are detected, SMARTEMBED
flags potential issues based on known vulnerabilities.

This publicly available tool allows for community benchmarking and independent
evaluation, a significant advantage highlighted by the authors. Our own benchmark-
ing on three benchmarks [13, 7, 11] for reentrancy and integer overflow vulnerabilities
revealed that SMARTEMBED exhibits low false alarm rates (0.4%) compared to

21Gao et al. [50, 49, 51] (SmartEmbed) is available: https://github.com/beyondacm/SmartEm
bed

64

https://github.com/beyondacm/SmartEmbed
https://github.com/beyondacm/SmartEmbed

CHAPTER 3. RELATED WORK

Metric Category #Studies References
Tool Availability Available * 5 [128, 50, 49, 51, 89,

103, 104, 127]
Not Available 30 [98, 66, 140, 92, 109,

150, 42, 75, 67, 14, 154,
139, 96, 91, 162, 146,
158, 126, 159, 148, 147,
142, 119, 90, 85, 69, 62,
72, 61, 125]

Dataset Availability Available * 10 [128, 50, 49, 51, 89,
109, 42, 14, 154, 146,
103, 104, 127]

Not Available 25 [98, 66, 140, 92, 150,
75, 67, 139, 96, 91, 162,
158, 126, 159, 148, 147,
142, 119, 90, 85, 69, 62,
72, 61, 125]

Analysis Levels Bytecode 11 [128, 140, 92, 14, 96,
158, 126, 147, 69, 62,
72]

Source code * 24 [50, 49, 51, 98, 89, 66,
109, 150, 42, 75, 67,
154, 139, 91, 162, 146,
159, 148, 142, 119, 90,
85, 61, 103, 104, 127,
125]

Analysis Techniques ML 11 [50, 49, 51, 98, 89, 66,
140, 150, 42, 67, 158,
147, 119]

Seq. DL 18 [128, 92, 109, 75, 14,
154, 139, 96, 146, 126,
148, 85, 69, 62, 72, 61,
127, 125]

Graph DL 6 [91, 162, 159, 142, 90,
103, 104]

Table 3.2: Learning-based Techniques for SC in primary studies; “Available*” with
the asterisk denoting potential availability of some studies upon request approval;
“Source code*” with the asterisk denoting the analysis level for some studies requires
source code and/or potential alternatives like transactions or account data.

65

CHAPTER 3. RELATED WORK

Figure 3.2: Learning-based Techniques for SC in primary studies; “Available*” with
the asterisk denoting potential availability of some studies upon request approval;
“Source code*” with the asterisk denoting the analysis level for some studies requires
source code and/or potential alternatives like transactions or account data.

state-of-the-art tools [93, 134, 105, 136]. However, it completely missed all reen-
trancy vulnerabilities in the benchmarks due to the limited size of its bug database.
Expanding and diversifying this database with more examples could significantly
enhance SMARTEMBED’s effectiveness in detecting a wider range of vulnerabilities.
We will delve deeper into this comparison in the later DLVA chapter of this thesis.
In summary, SMARTEMBED represents a valuable tool for smart contract analysis,
but further development focusing on diversifying its bug database could unlock its
full potential for enhanced vulnerability detection.

Momeni et al. [98] (2019) developed a machine learning model for detecting
16 security vulnerabilities within smart contract source code, including reentrancy
and suicide attacks. Their approach relies on extracting 17 predefined features

66

CHAPTER 3. RELATED WORK

from the Abstract Syntax Tree (AST) of the code, focusing on Solidity code struc-
tures that appeared more than 1000 times within their dataset. Four distinct
machine learning classifiers—Support Vector Machines (SVM), Neural Networks
(NN), Random Forests (RF), and Decision Trees (DT)—were then employed to
identify vulnerabilities.

The authors reported promising results, achieving an average accuracy of 95%
in predicting major vulnerabilities and outperforming two static analyzers, Slither
and Mythril, in terms of speed. However, the study has limitations that hinder
its broader assessment and adoption. First, the artifacts of this work, such as the
model, dataset, and source code, are not publicly available. This lack of accessibility
prevents independent investigation and benchmarking by the research community,
making it challenging to fully evaluate the model’s performance on independent
test sets and compare it with other approaches. Second, the dataset used in the
study is limited to Solidity version 0.4.18. This raises questions about the model’s
generalizability to contracts written in newer Solidity versions, which may introduce
new vulnerabilities or code patterns. Despite these limitations, Momeni et al.’s
work demonstrates the potential of machine learning techniques for smart contract
vulnerability detection. Further research and the release of publicly available artifacts
would enable a more comprehensive evaluation of this approach and facilitate its
potential adoption in practice. Our work, DLVA, is inspired by the improvements
achieved by Momeni et al., but operates directly on bytecode without requiring source
code and utilizes unsupervised feature engineering, thus not relying on predefined
features.

Liao et al. [89] (2019)22 introduced SoliAudit, a smart contract vulnerability
assessment tool that leverages both machine learning and fuzz testing. This powerful
approach enables detection of 13 vulnerabilities, including reentrancy, access control
issues, and denial-of-service attacks. SoliAudit’s strength lies in its combined
approach. It uses word2vec and n-gram models with term frequency-inverse document
frequency (tf-idf) to effectively represent each opcode in a smart contract as a
vector. These vectors are then aggregated to form a comprehensive feature matrix.
Subsequently, SoliAudit employs various machine learning classifiers trained on this

22Liao et al. [89] (SoliAudit) is available: https://github.com/jianwei76/SoliAudit/tree/
master/va

67

https://github.com/jianwei76/SoliAudit/tree/master/va
https://github.com/jianwei76/SoliAudit/tree/master/va

CHAPTER 3. RELATED WORK

data to identify vulnerabilities. Furthermore, SoliAudit automates the creation of a
fuzzer contract specifically designed for abnormal analysis, conducting in-depth fuzz
testing to uncover hidden vulnerabilities. This combination of machine learning and
fuzzing provides a powerful and comprehensive detection capability.

Crucially, SoliAudit is publicly available, fostering independent evaluation and
benchmarking by the research community. We evaluated SoliAudit on three bench-
marks [13, 7, 11], achieving an average accuracy of 81.9%. A detailed comparison
with other tools is presented in our DLVA paper [3], and we will delve deeper into
this comparison in the DLVA chapter of this thesis. SoliAudit’s public availability
and impressive performance make it a valuable tool for developers and security
researchers alike, advancing the field of smart contract vulnerability detection.

Hao et al. [66] (2020) introduced SCScan, a smart contract vulnerability scanning
system that leverages Support Vector Machine (SVM) classifier for detection. SCScan
relies primarily on pattern matching against predefined expert rules to identify five
specific features: presence of a fallback function; number of lines in the fallback
function; number of < and > characters; number of call.value, send, and transfer
functions; and ability for the last user to retrieve the bid amount. Based on these
features, SCScan constructs a five-dimensional feature vector and utilizes an SVM
classifier to detect six vulnerabilities, including reentrancy and denial-of-service
attacks.

While the authors report promising results, the study suffers from several limita-
tions. Firstly, the research artifacts, including the trained model, dataset, and source
code, are not publicly available. This lack of accessibility prevents independent
investigation and benchmarking by the broader research community, making it diffi-
cult to verify the reported performance and compare it with other tools. Secondly,
the study lacks a comprehensive comparison with state-of-the-art tools. Without
benchmarking against established methods on independent datasets, it’s challenging
to assess the relative effectiveness and generalizability of SCScan’s approach. There-
fore, while SCScan presents an interesting approach to smart contract vulnerability
detection using SVMs, further research and improved transparency are necessary
for a more comprehensive evaluation and potential adoption in practical settings.

Wang et al. [140] (2020) proposed ContractWard, a vulnerability detection
method for smart contracts, operates by first transforming source code into opcodes.

68

CHAPTER 3. RELATED WORK

Opcodes are then simplified by removing operands and grouping functionally similar
opcodes. Bigram features are extracted from the simplified opcode fragments,
resulting in a 1619-dimensional feature space used for vulnerability identification.
ContractWard employs One vs. Rest (OvR) algorithms for multi-label classification
within this feature space. Its design targets the detection of six specific vulnerabilities:
Integer Overflow, Integer Underflow, Transaction-Ordering Dependence, Callstack
Depth Attack, Timestamp Dependency, and Reentrancy.

However, ContractWard faces limitations stemming from the small window size
of its bigram language model. This constraint renders it unsuitable for lengthy
contracts and hinders its ability to capture long-term dependencies within the
code. To effectively address this issue, a larger window size is necessary, but this
poses challenges due to the high dimensionality of the data, which can impede
model training. Additionally, the authors reported ContractWard’s performance
on their test set without conducting comparisons to state-of-the-art tools, raising
concerns about its relative performance. Unfortunately, further investigation and
benchmarking of ContractWard are obstructed by the lack of publicly available tools,
training and testing datasets, and source code.

Eshghie et al. [42] (2021) introduced Dynamit, a novel smart contract vulnerability
detection approach that stands out for its reliance solely on publicly available
transaction and balance data from the blockchain. Unlike other methods, Dynamit
doesn’t require access to the contract source code. It operates by extracting key
features from transaction data and training machine learning models (e.g. Naive
Bayes (NB), Logistic Regression (LR), K-nearest neighbors (K-NN), SVM, and RF)
to classify them as benign or harmful. Notably, Dynamit specializes in detecting
reentrancy vulnerabilities, even generating an attack execution trace. The authors
meticulously crafted four specific features and trained five different machine learning
classifiers, achieving promising results.

However, Dynamit lacks benchmarking against state-of-the-art tools, hindering
a comparison of its relative performance. While the source code is available, the
end-user tool for wider community testing on independent datasets is missing. This
restricted accessibility prevents comprehensive evaluation and hinders practical
adoption. We plan to explore transaction utilization as an anomaly detection
technique for vulnerability detection in future work.

69

CHAPTER 3. RELATED WORK

Xu et al. [150] (2021) introduced a novel machine learning-based approach for
smart contract vulnerability detection that utilizes shared child nodes within Abstract
Syntax Trees (ASTs). This method focuses on predicting eight vulnerability types,
including reentrancy, arithmetic errors, access control issues, and denial-of-service
vulnerabilities. The core idea lies in analyzing the shared child nodes between
the AST of a target smart contract and a set of predefined ASTs representing
known malicious contracts. These shared child nodes act as indicators of potential
vulnerabilities, and their frequency is quantified to create a feature vector. For
instance, if four known reentrancy vulnerabilities share three, five, two, and seven
child nodes with the analyzed contract, its feature vector would be (3, 5, 2, 7).

The authors reported promising performance compared to existing analysis
tools like Oyente and SmartCheck. However, a crucial limitation hinders further
investigation and evaluation: the lack of publicly available artifacts. Neither the tool
itself nor the dataset and source code are publicly accessible, preventing independent
benchmarking and broader community scrutiny. This lack of transparency restricts
comprehensive evaluation of the approach’s strengths, weaknesses, and real-world
applicability. Therefore, while Xu et al.’s shared child node analysis presents a
promising direction for vulnerability detection, its lack of accessibility hinders its
potential for wider adoption and thorough validation.

Zhang et al. [158] (2021) proposed a methodology for detecting Ponzi schemes
in smart contracts by extracting distinctive features from contract bytecode and
opcodes. They employed the Term Frequency-Inverse Document Frequency (TF-IDF)
technique to create a vector space representation of opcode occurrences, enabling
the measurement of bytecode similarity between contracts under scrutiny and a
predefined set of known Ponzi schemes. This approach aimed to detect Ponzi schemes
by identifying resemblances in bytecode structures. Their experiments demonstrated
outstanding performance with precision and recall reaching 97%. However, the
study lacked comparisons with state-of-the-art tools, and the trained model was not
made available for independent benchmarking and further investigation, limiting its
generalizability and potential for broader adoption.

Hara et al. [67] (2021) presented a novel machine learning model for identifying
honeypot vulnerabilities in smart contracts. The proposed approach leverages TF-
IDF and word2vec for feature extraction and representation learning, followed by

70

CHAPTER 3. RELATED WORK

XGBoost classification for honeypot detection. Term-frequency inverse document
frequency (TF-IDF) identifies prominent keywords within the contract’s bytecode,
highlighting potential honeypot patterns. Word2vec then creates distributed repre-
sentations of these keywords, capturing their semantic relationships and context,
enriching the model’s understanding.

Despite achieving promising results, the paper fails to provide crucial comparisons
against existing state-of-the-art tools. This omission makes it difficult to assess the
model’s true effectiveness and advancement over established solutions. Furthermore,
the lack of publicly available artifacts, such as trained model or datasets, prevents
independent validation and benchmarking by the research community. This hinders
the model’s potential for wider adoption and collaborative improvement. In summary,
while Hara et al.’s work offers an interesting exploration of honeypot detection in
smart contracts, its limitations in comparative evaluation and open accessibility
significantly restrict its broader scientific contribution and practical applicability.

Wu et al. [147] (2022) proposed a smart contract vulnerability detection approach
that utilizes opcodes as static features and employs various machine learning algo-
rithms for classification. The method extracts opcode features using both unigram
and bigram techniques, generating 141-dimensional and 20087-dimensional feature
representations, respectively. These features are then transformed into contract
embeddings using the mean term frequency-inverse document frequency (Mtfidf)
technique. The model subsequently employs several multi-label classification algo-
rithms, including KNN, DT, RF, CNN, LSTM, CNN-BiLSTM, and ResNets, to
identify vulnerabilities.

This approach is specifically designed to detect six types of vulnerabilities:
Overflow, Underflow, Call, TOD, Timestamp, and Reentrance. The authors reported
promising results, achieving a Macro-F1 score of 82% on their own test set. However,
the study’s conclusions are constrained by the lack of benchmarking against state-of-
the-art tools, which hinders the assessment of its relative performance. Furthermore,
the absence of publicly available artifacts, including the tool itself, datasets, and
source code, prevents independent investigation and benchmarking by the broader
community. This limited accessibility restricts a comprehensive evaluation of the
approach’s strengths and weaknesses, making it challenging to fully understand its
practical potential.

71

CHAPTER 3. RELATED WORK

Shakya et al. [119] (2022) introduced SmartMixModel, a smart contract vulnera-
bility detection model that leverages an expanded feature space encompassing both
source code and bytecode information. This unique approach goes beyond typical
methods by combining high-level syntactic features extracted from the Solidity
source code (using Code2Vec) with low-level features gleaned from the compiled
bytecode (using an n-gram algorithm). This dual-level feature space enables Smart-
MixModel to capture a more comprehensive picture of the contract, leading to
improved vulnerability detection accuracy. Notably, the model targets ten different
types of vulnerabilities, expanding its coverage compared to many existing tools.

However, despite its promising capabilities, the study lacks crucial elements for a
comprehensive evaluation. The authors solely reported performance based on ground
truth data generated by the SmartCheck static analyzer, neglecting comparisons
with other state-of-the-art tools. Furthermore, the absence of publicly available
artifacts, including SmartMixModel itself, the datasets, and the source code, hinders
independent benchmarking and prevents a thorough assessment of its strengths
and weaknesses relative to existing approaches. This limited accessibility makes it
difficult to fully evaluate SmartMixModel’s potential and effectiveness in real-world
applications.

3.2.2 Sequential Deep Learning (Seq. DL) Studies/Tools:

Tann et al. [128] (2018)23 introduced SaferSC, the first work to leverage Long
Short-Term Memory (LSTM) neural networks for analyzing smart contract opcodes
and detecting vulnerabilities. Pioneering this approach, SaferSC targeted three
specific categories: suicidal, prodigal, and greedy contracts. However, the paper
ultimately combined these vulnerabilities into a single “vulnerable” vs. “non-
vulnerable” classification. Despite not achieving perfect granularity, SaferSC still
showcased significant accuracy improvements compared to the symbolic analysis
tool Maian. However, LSTMs have limitations. While excelling at sequence learning,
they struggle with control-flow vulnerabilities like reentrancy, which exploit recursive
function calls to manipulate contract behavior and steal funds. Unfortunately,
LSTMs’ focus on sequential patterns makes them ill-equipped to capture these

23Tann et al. [128] (SaferSC) is available: https://github.com/wesleyjtann/Safe-SmartCont
racts

72

https://github.com/wesleyjtann/Safe-SmartContracts
https://github.com/wesleyjtann/Safe-SmartContracts

CHAPTER 3. RELATED WORK

intricate control-flow issues, hindering their effectiveness in detecting and addressing
such vulnerabilities.

Crucially, SaferSC stands out for its public availability, enabling benchmarking
and independent evaluation by the research community. Inspired by this trans-
parency, we followed suit and made all our tools publicly accessible. Interestingly,
we benchmarked two pre-trained SaferSC models: “LSTM” and “Improved_LSTM”
using our Elysium benchmark [7]. While the “LSTM” model failed spectacularly,
classifying every contract as suicidal, the “Improved_LSTM” model demonstrated
significant progress with an accuracy of 91.9%. This discrepancy warrants further
investigation into potential overlap between the SaferSC training set and the Elysium
benchmark. Notably, SaferSC’s reported 99.57% accuracy significantly outperformed
Maian’s 89%, but our results highlight the importance of robust benchmarks in
evaluating true performance. We will delve deeper into this comparison in the later
DLVA chapter of this thesis. Nevertheless, the SaferSC team has done the right
thing releasing their tool as it allows for a more scientific understanding of their
technique’s accuracy and performance.

Qian et al. [109] (2020) proposed a novel approach for detecting only one type
of vulnerabilities (e.g., reentrancy) in smart contracts, known as BLSTM-ATT.
This model leverages various deep learning architectures, including GRU, LSTM,
BLSTM, and LSTM-Attention, alongside N-grams and word2vec word embeddings.
The key innovation of BLSTM-ATT lies in its code snippet condensation technique.
It identifies semantically related sections of the source code, focusing specifically
on snippets involving “call.value”, a crucial element of reentrancy vulnerabilities.
This condensed representation allows the model to focus on relevant code sections,
potentially improving its detection accuracy.

The authors reported promising results, demonstrating superior performance
compared to four established reentrancy detection tools: Oyente, Mythril, Securify,
and SmartCheck. However, our attempt to evaluate BLSTM-ATT further encoun-
tered limitations: While the source code is available, crucial files for building and
training the models as a practical tool are missing. This lack of readily available
tools hinders independent benchmarking and wider adoption. Attempts to contact
the authors for assistance with the missing artifacts have been unsuccessful, further
hindering our evaluation efforts.

73

CHAPTER 3. RELATED WORK

Despite these limitations, Qian et al.’s work demonstrates the potential of deep
learning for smart contract vulnerability detection, particularly with the innovative
code snippet condensation technique. However, the lack of accessible artifacts
and limited communication from the authors significantly hinder a comprehensive
assessment and practical deployment of this promising approach.

Lou et al. [92] (2020) took a unique approach to identify Ponzi schemes within
smart contracts by building a dedicated Convolutional Neural Network (CNN)
model. Their method stands out for its preprocessing step, transforming the
contract’s bytecode into visual representations for the CNN to analyze. This involves:
converting the hexadecimal bytecode to its decimal equivalent, standardizing the
decimal values for consistent scaling, and generating images from the standardized
values, leveraging the CNN’s ability to learn features from visual data.

The model performs well on a dataset of 3774 samples, achieving a promising
F-score of 95.9% according to the reported results by the authors. However, the
study has limitations that hinder a definitive evaluation: The CNN’s performance
is not benchmarked against other established Ponzi scheme detection methods,
making it difficult to assess its relative effectiveness. The model, dataset, and source
code are not publicly available, preventing independent investigation and further
research by the broader community. The relatively small dataset raises questions
about the model’s generalizability and ability to detect diverse Ponzi schemes in
different contract structures. While the reported results are encouraging, further
research with larger datasets, comparisons to existing tools, and public accessibility
of artifacts are necessary to fully assess the potential of this novel CNN for real-world
Ponzi scheme detection in smart contracts.

Wu et al. [146] (2021) introduced Peculiar, a smart contract vulnerability detec-
tion model utilizing a pre-trained language models and focusing on analysis of crucial
data flow graphs (CDFGs). CDFGs are subgraphs of data flow graphs (DFGs) con-
taining critical information potentially leading to vulnerabilities. Peculiar leverages
this focused analysis, capturing essential data flow information directly from the
CFG instead of explicitly outlining the entire program as a graph. This approach
balances feature preservation for model generalization across diverse contracts while
maintaining efficiency. The model operates by first extracting the DFG and CDFG
from the source code’s abstract syntax tree (AST) and then performing vulnera-

74

CHAPTER 3. RELATED WORK

bility detection based on its pre-trained architecture. Notably, Peculiar currently
targets only specific vulnerabilities (e.g., reentrancy) but demonstrates the authors’
dedication to meticulous dataset labeling efforts.

Peculiar is currently unavailable as a ready-to-use tool, and our attempt to
replicate Peculiar’s results encountered obstacles . While the source code is available,
we use it to reproduce the reported results, but training the model beyond the first
epoch proved unsuccessful. Despite contacting the authors for assistance, we haven’t
received a response at the time of writing. Further investigation is necessary to
diagnose and overcome this training hurdle.

Sun et al. [126] (2021) proposed a novel method for smart contract vulnerability
detection, targeting three specific types: reentrancy, arithmetic errors, and time
manipulation. This approach leverages a Convolutional Neural Network (CNN) fused
with a self-attention mechanism for improved accuracy and efficiency. The process
starts by transforming each opcode instruction into a 78-dimensional vector using one-
hot encoding. Subsequently, the self-attention mechanism extracts a feature vector
representing the entire contract, capturing key relationships between instructions.
This allows the CNN to learn complex patterns indicative of vulnerabilities within
the contract’s code.

Sun et al. report promising results, showcasing lower missing rates and faster
detection times compared to two popular static analysis tools, Oyente and Mythril.
However, a crucial limitation of this work is the lack of publicly available artifacts. To
fully assess the approach’s strengths and weaknesses, the broader research community
requires access to the model, datasets, and source code used in the study. Without
such accessibility, independent investigation and benchmarking remain impossible,
hindering the potential for further development and adoption of this promising
vulnerability detection technique.

Jeon et al. [75] (2021) presented SmartConDetect, a vulnerability detection
tool designed to identify security flaws in Solidity smart contracts. It employs a
pre-trained BERT model to extract code segments and pinpoint vulnerable pat-
terns. SmartConDetect targets a broad range of 23 vulnerability classes, utilizing
SmartCheck’s outputs as ground truth for training. The process operates as fol-
lows: Each function within a contract is encoded using BERT, resulting in a
768-dimensional vector representation that captures its semantic meaning. These

75

CHAPTER 3. RELATED WORK

vectors are then fed into a fully connected layer, which condenses the embedding
output for further processing. The softmax function is employed as the activation
mechanism, and the binary cross-entropy function is used to classify the presence or
absence of vulnerabilities within the analyzed code.

The authors reported an impressive F1-Score of 90.9% for SmartConDetect
analysis of smart contract source code, indicating a high degree of both precision
and recall in vulnerability detection. The tool’s ability to address a wide spectrum
of 23 vulnerability classes further highlights its potential versatility. However, a
significant limitation of this work is the lack of publicly available artifacts, such
as the model, training, and testing datasets. This lack of accessibility prevents
independent evaluation and benchmarking by the broader research community,
making it challenging to verify the reported performance and compare it with
other approaches. Without such transparency and reproducibility, the adoption of
SmartConDetect in practical settings remains hindered.

Wang et al. [139] (2021) proposed AFS, a model that carefully analyzes both
structure and semantics within smart contracts to detect vulnerabilities. It accom-
plishes this through a unique combination of techniques, including Abstract Syntax
Tree (AST) serialization, program slicing, word2vec representation, and Long Short-
Term Memory (LSTM) networks. AFS begins by translating a contract’s functions
into ASTs, which represent the code’s structural organization. A depth-first search
then traverses these ASTs, ensuring that any vulnerability-related structural infor-
mation is preserved during serialization. To extract the semantic meaning embedded
within the code, AFS applies program slicing techniques, isolating and focusing
on code segments that are potentially relevant to vulnerabilities. The word2vec
method, commonly used in natural language processing, is then employed to cap-
ture a comprehensive feature representation of the code, effectively encoding both
structural and semantic information. Finally, AFS utilizes LSTM and BLSTM-ATT
(Bidirectional LSTM with Attention Mechanism), two neural network architectures,
to analyze the extracted features and semantic information, classifying the code as
either vulnerable or non-vulnerable.

However, AFS faces limitations in terms of resource availability and dataset
accessibility. Crucial resources like source code, datasets, and trained models are
not publicly available, hindering independent evaluation and benchmarking by the

76

CHAPTER 3. RELATED WORK

wider research community. Additionally, while the authors claim significant efforts
in manually labeling their dataset, it remains inaccessible for further investigation
and validation of their results. The authors reported AFS’s performance on their
test set without conducting comparisons to state-of-the-art tools, raising concerns
about its relative performance.

Ashizawa et al. [14] (2021) introduced Eth2Vec, a machine learning-based static
analysis tool for smart contract vulnerability detection. Its unique approach involves
learning from smart contract source code through their EVM bytecode, assembly
code, and abstract syntax trees. Eth2Vec identifies vulnerabilities by comparing
the code similarity between a target contract’s EVM bytecode and the ones it has
already learned. The tool operates through two key modules: the EVM Extractor,
which prepares inputs for the PV-DM model by processing Solidity source code, and
the PV-DM model itself. This unsupervised neural network excels at paragraph-level
text processing, transforming code data into vector representations that capture
both individual words and entire paragraphs. These vectors then become the fuel
for Eth2Vec’s detection of both code clones and vulnerabilities.

However, despite its potential, Eth2Vec faces some significant limitations. No-
tably, it disregards the valuable information encoded within a program’s graph
structure, treating the code purely as textual data. Additionally, its ability to gener-
alize beyond its original training dataset is limited, as reported by its authors, raising
concerns about its practical effectiveness in real-world scenarios. Furthermore, while
the paper offers a link to its implementation code, the provided repository lacks a
complete and user-friendly tool for end-user deployment. Attempts to independently
build and train the tool have been hampered by missing files within the codebase.
Finally, efforts to contact the authors for clarification and assistance have not yielded
any response.

In summary, while Eth2Vec’s code similarity and vector representation approach
holds promise for smart contract vulnerability detection, addressing its limitations in
graph structure utilization, generalization capabilities, tool accessibility, and author
responsiveness is crucial for its practical impact and wider adoption within the
field of smart contract security. In a comparison, our tools and datasets are readily
available and perform effectively on multiple benchmarks disjoint from training sets.

Yu et al. [154] (2021) introduced DeeSCVHunter, a model designed to enhance

77

CHAPTER 3. RELATED WORK

deep learning-based smart contract vulnerability detection by leveraging data and
control dependencies within the source code. However, DeeSCVHunter focuses solely
on two specific vulnerabilities: reentrancy and time dependence. To achieve this,
DeeSCVHunter dissects the smart contract into smaller code segments and generates
“vulnerability candidate slices” (VCS) based on specific match patterns. For example,
“call.value” and “block.timestamp” patterns respectively target reentrancy and time
dependence vulnerabilities. DeeSCVHunter then expands these VCS by tracing
data flows and control flows from the matched statements, gathering relevant code
segments that might contribute to the potential vulnerability.

This reliance on specific pattern matching poses a significant limitation. Expand-
ing DeeSCVHunter’s scope to detect other vulnerabilities would require identifying
unique patterns for each, potentially demanding considerable effort and expertise.
Further hindering broad adoption, DeeSCVHunter’s availability remains shrouded
in uncertainty. While promising public access, the currently available repository
only offers data pre-processing code, lacking the crucial training code and final
tool. Despite author confirmation that the repository will be updated and fully
open-sourced, this has not yet materialized as of now. Additionally, attempts to
contact the authors have yielded no response.

In summary, while DeeSCVHunter’s approach based on vulnerability-specific
pattern matching and deep learning holds promise for certain targeted vulnerabil-
ities, its limitations in coverage and accessibility significantly hinder its broader
impact. Addressing these limitations, through pattern development for additional
vulnerabilities and complete open-sourcing of the tool, is crucial for DeeSCVHunter
to realize its full potential in detecting smart contract vulnerabilities.

Mi et al. [96] (2021) introduced VSCL, a model for detecting vulnerabilities in
smart contracts bytecode. Its distinctive feature lies in prioritizing code structure
by meticulously reordering bytecode sequences. This reordering, guided by control
flow graphs (CFGs) and depth-first search (DFS) algorithms, aims to elevate the
most critical code segments for vulnerability analysis. VSCL’s journey begins by
translating the smart contract’s bytecode, a low-level representation, into a sequential
format. Then, it constructs CFGs, and by utilizing DFS, VSCL meticulously traverses
these CFGs, rearranging the bytecode sequence. This reordered sequence of tokens is
then transformed into a numerical feature vector using the n-gram/TFIDF technique,

78

CHAPTER 3. RELATED WORK

capturing its key characteristics. Finally, a deep neural network analyzes this vector,
classifying the contract as either vulnerable or non-vulnerable. It’s noteworthy that
in contrast to VSCL’s focus on bytecode sequence reordering, our tools harness the
power of graph neural networks to directly extract valuable features from the CFG
structure, offering a distinct approach to vulnerability detection.

While VSCL’s approach shows promise, limitations hinder its practical impact.
Notably, VSCL only detects vulnerabilities without specifying their types. This lack
of specificity can impede developers’ ability to prioritize and address critical issues,
as some vulnerabilities pose significantly higher risks than others. Additionally,
the authors reported VSCL’s performance on their test set without conducting
comparisons to state-of-the-art tools, raising concerns about its relative performance.
Furthermore, crucial resources for independent evaluation and research, including
source code, training and testing datasets, trained models, and an executable version
of the tool, are not publicly available. This lack of transparency raises concerns
about the reproducibility and validity of VSCL’s results. Additionally, attempts
to contact the authors for clarification, access to tools, and further information
regarding training methods and dataset labeling have not yielded any response.

In summary, VSCL’s focus on code structure through bytecode reordering presents
a potentially valuable approach to smart contract security. However, addressing the
limitations in vulnerability specificity, resource availability, and author communica-
tion is crucial for VSCL to realize its full potential and contribute meaningfully to
safeguarding the smart contract landscape.

Guo et al. [61] (2022) proposed SCVSN, a Siamese network model for detecting
only one type of vulnerabilities (e.g., reentrancy) in smart contracts. This model
operates by comparing the similarity of two contracts: a sample contract under
scrutiny and a set of predefined “bug-vectors” representing known vulnerabilities.
The process involves extracting a feature vector from the sample contract and
calculating its Euclidean distance to each bug-vector. If the distance to any bug-
vector falls below a predetermined threshold, the sample contract is flagged as
vulnerable to the corresponding reentrancy vulnerability.

While the authors reported promising performance results and provided a link to
their artifacts, our investigation revealed several concerns. The link to the supposed
GitHub repository (https://github.com/xiaoaochen/SCVSN) is non-existent,

79

https://github.com/xiaoaochen/SCVSN

CHAPTER 3. RELATED WORK

suggesting a lack of transparency and accessibility of the proposed method. Addi-
tionally, the reported comparisons with other tools seem to be based on secondary
sources rather than direct experimentation, raising questions about the validity and
objectivity of the performance claims. Ultimately, the absence of readily available
artifacts and independent verification hinders the broader community’s ability to
assess and validate the effectiveness of SCVSN. This lack of transparency and in-
dependent benchmarking significantly limits the trustworthiness and potential for
wider adoption of the proposed approach.

Xu et al. [148] (2022) proposed HAM-BiLSTM, a method for detecting reen-
trancy vulnerabilities in smart contracts that integrates both source code and
account information. The model employs a sequential neural network with an
attention mechanism, designed to specifically identify reentrancy vulnerabilities.
HAM-BiLSTM operates by first converting the contract source code and account
information into word vectors using the word2vec model. These vectors are then
fed into a bidirectional LSTM (BiLSTM) network for classification. The attention
mechanism within the network enables it to focus on the most relevant parts of the
input data for vulnerability detection.

While the authors reported promising performance results compared to three
state-of-the-art tools (Oyente, Osiris, and Mythril), the study has limitations that
hinder its generalizability. The ground truth of the test set used for evaluation
is not publicly known, making it difficult to assess the accuracy of the results
independently. Additionally, the lack of publicly available artifacts, including the
tool itself, datasets, and source code, prevents further investigation and benchmarking
by the broader research community. This lack of transparency and accessibility
restricts the comprehensive evaluation of HAM-BiLSTM’s strengths and weaknesses,
ultimately limiting the assessment of its practical potential.

Li et al. [85] (2022) proposed Link-DC, a vulnerability detection model for
smart contracts that leverages both structural and pattern-based features. The
model operates through two key components: a contract graph built from the smart
contract’s control and data flow, and expert-defined pattern features. The contract
graph serves as a structural representation of the contract, where key variables
and function calls act as nodes connected by edges reflecting control and data flow.
One-hot encoding is applied to both nodes and edges to create a graph embedding.

80

CHAPTER 3. RELATED WORK

Meanwhile, expert knowledge is incorporated through sub-pattern one-hot encoding,
capturing crucial conditions often associated with vulnerabilities. These encoded
patterns are then combined with the graph embedding to form a comprehensive
feature vector for vulnerability detection using a Multilayer Perceptron (MLP)
classifier.

Link-DC’s detection capabilities are focused on three specific vulnerabilities:
reentrancy, timestamp dependence, and infinite loops. While the authors reported
high performance compared to CGE through cited results [91], they conducted no
direct comparisons with state-of-the-art tools. Furthermore, the lack of publicly
available artifacts, including the tool itself, datasets, and source code, hinders
independent investigation and benchmarking, limiting a thorough evaluation of
Link-DC’s strengths and weaknesses.

Hu et al. [69] (2022) designed SCSGuard, a deep learning framework specifically
aimed at detecting scam smart contracts, including honeypots, Ponzi schemes, and
phishing scams. This approach leverages the power of n-gram features and an
attention-based neural network to analyze smart contract bytecodes and effectively
identify potential phishing scripts. SCSGuard works by first slicing the bytecode into
a series of two-character bytes, each representing specific features of the contract.
These bytes are then transformed into vector representations using an n-gram
method, where each distinct combination of n consecutive bytes becomes a unique
feature. Finally, these bytecode n-grams are converted into vectors and fed into an
attention-based neural network for classification.

While the reported accuracy and performance of SCSGuard appear promising,
several limitations hinder further evaluation and comparative analysis. Firstly, the
study lacks any comparison or benchmarking with established state-of-the-art tools,
making it difficult to assess its relative effectiveness. Additionally, the authors haven’t
made SCSGuard’s artifacts publicly available, including the tool itself, datasets,
and source code. This limited accessibility impedes independent investigation and
benchmarking, preventing a more comprehensive understanding of its strengths and
weaknesses.

Gupta et al. [62] (2022) introduced a novel approach for smart contract categoriza-
tion that incorporates a reward-penalty system based on security assessments. Their
methodology involves converting contract opcodes into one-hot encoded vectors,

81

CHAPTER 3. RELATED WORK

which are subsequently transformed into feature vectors of length 256, correspond-
ing to the possible opcodes. Each entry in the vector represents the count of the
respective opcode within the contract. The generated feature vectors are then fed
into deep learning models, such as artificial neural networks (ANN), long short-term
memory (LSTM), and gated recurrent unit (GRU) models, for classification purposes
in the prediction layer.

However, despite the reported high accuracy, the study’s findings are limited by
several factors. The authors did not conduct comparisons or benchmarking with
state-of-the-art tools, hindering the assessment of its relative performance. Addition-
ally, the approach treats contract bytecode solely as a text sequence, disregarding
its execution flow, which may overlook potential vulnerabilities. Furthermore, the
method only provides a binary classification of secure or malicious, without iden-
tifying specific vulnerability types. Further investigation and benchmarking are
impeded by the unavailability of tools, datasets, or source code.

Hwang et al. [72] (2022) proposed CodeNet, a novel approach to smart contract
vulnerability detection that takes a unique visual route. Instead of relying on
traditional text analysis, CodeNet transforms smart contracts into images, capturing
their structure and logic while preserving local context. This visual representation
allows CodeNet to leverage the power of convolutional neural networks (CNNs) for
vulnerability identification. The transformation process involves three steps: first,
the smart contract source code is compiled into bytecode, a lower-level instruction
set. Then, the bytecode is adjusted to a fixed size to ensure consistency in image
formation. Finally, each bytecode instruction is meticulously mapped to a specific
RGB pixel value, creating a contract-specific image. This image, fed into the CNN
model, becomes the basis for vulnerability detection.

However, our investigation revealed some limitations. Currently, CodeNet targets
only four specific vulnerabilities: reentrancy, unchecked low-level calls, tx.origin,
and timestamp dependency. This limited scope restricts its overall effectiveness.
Additionally, the reported results haven’t been validated using real-world vulnerable
contracts, leaving questions about its practical performance. Furthermore, the tool,
source code, and datasets remain unavailable, hindering independent evaluation and
further research.

In summary, while CodeNet introduces a promising visual-based approach to

82

CHAPTER 3. RELATED WORK

smart contract vulnerability detection, addressing its limitations in scope, real-
world validation, and resource availability is crucial for its practical adoption and
advancement. Expanding its vulnerability detection capabilities, validating its
performance on real-world contracts, and making its resources readily available
would significantly enhance CodeNet’s potential in securing the smart contract
landscape.

Sun et al. [125] (2023) proposed a novel framework, ASSBert, that combines active
and semi-supervised learning techniques to enhance smart contract vulnerability
detection. It targets six specific vulnerabilities, including reentrancy and timestamp
dependence. ASSBert combines the strengths of active and semi-supervised learning
to improve its effectiveness. Active learning identifies uncertain segments from
unlabeled Solidity files, manually annotates them, and adds them to the training set.
This process refines the model’s understanding of vulnerable code patterns. Semi-
supervised learning further leverages unlabeled data by selecting high-confidence code
segments and assigning pseudo-labels based on the model’s predictions. These pseudo-
labeled segments are then incorporated into the training set, further enhancing the
model’s performance.

However, active learning’s dependence on manual annotation can be a bottle-
neck. Addressing this limitation, our concurrent work, SCooLS (2023), employs an
automated committee voting strategy. This eliminates the need for manual annota-
tion by leveraging multiple models to vote on uncertain code, achieving comparable
accuracy without human intervention. SCooLS further innovates by going beyond
mere vulnerability detection. It generates realistic attack scenarios to exploit the
identified bugs, providing richer insights for developers and security professionals.

While Sun et al. report promising improvements compared to baseline language
models, a comprehensive evaluation remains difficult. The lack of public availability
of artifacts including the trained model and datasets prevents benchmarking against
state-of-the-art tools and independent investigation. Overall, Sun et al.’s work shows
promise in its novel approach to smart contract vulnerability detection. However,
wider accessibility and rigorous comparison with existing tools are crucial for a
definitive assessment of ASSBert effectiveness and practical applicability.

83

CHAPTER 3. RELATED WORK

Tang et al. [127] (2023)24 presented Lightning Cat, a novel model that demon-
strates significant advancements in vulnerability detection within smart contracts.
Notably, it leverages the pre-trained CodeBERT model for data preprocessing, en-
hancing its ability to comprehend source code semantics. This model effectively
addresses a common challenge faced by large language models (LLMs), namely
the limitation in processing lengthy texts. Lightning Cat accepts Solidity func-
tions in text format, conducts thorough analysis, and accurately identifies potential
vulnerabilities.

However, at the time of writing, accessing the tool itself requires contacting the
authors, who haven’t yet responded. Building upon these advancements in LLMs,
our future research will explore LLM techniques for vulnerability detection directly
within bytecode, further expanding the scope and effectiveness of smart contract
security.

3.2.3 Graph Deep Learning (Graph DL) Studies/Tools:

Zhuang et al. [162] (2021) investigated the potential of graph neural networks
(GNNs) for smart contract vulnerability detection. Their approach involves con-
structing a “contract graph” that encodes both syntactic and semantic information
from the source code. Nodes in this graph represent key elements like function calls
and variables, while edges capture their temporal execution relationships. To priori-
tize crucial nodes, the authors propose an elimination phase for graph normalization.
Subsequently, they introduce two dedicated models for vulnerability detection: a
degree-free graph convolutional neural network (DR-GCN) and a temporal message
propagation network (TMP). Both models operate on the normalized graph to
identify vulnerabilities.

Our examination revealed limitations in the scope and generalizability of this
approach. The model currently targets only three specific vulnerabilities (reentrancy,
timestamp dependence, and infinite loop). Furthermore, the method for identify-
ing critical nodes lacks generalizability and necessitates manual customization for
different vulnerabilities. For instance, detecting reentrancy relies on recognizing
invocations of “transfer” and “call.value” functions, while timestamp dependence

24Tang et al. [127] (Lightning Cat) is available: upon reasonable request it could be provided.

84

CHAPTER 3. RELATED WORK

focuses on the “block.timestamp” function, and infinite loop detection treats all
custom functions as crucial nodes. Despite this limited scope, the model achieves
an average F1 score of 77% across these three vulnerabilities. We hypothesize that
this performance limitation stems from the graph normalization process potentially
eliminating malicious nodes crucial for vulnerability exploitation. In contrast, our
models excel in their ability to prioritize the most significant nodes within the CFG,
extracting the final contract or function embedding without relying on any predefined
elimination patterns. This distinction liberates our models from the constraints that
hinder the extension of Zhuang et al.’s approach to a wider array of vulnerabilities.

Unfortunately, the paper lacks readily available resources for further exploration.
Despite finding multiple GitHub repositories containing source code, we couldn’t
locate pre-trained models or deployable tools. Our attempts to contact the authors
for clarification and access to tools haven’t yielded any response at the time of
writing. Further investigation is required to address these limitations and assess the
full potential of this GNN-based approach for smart contract vulnerability detection.

Liu et al. [91] (2021) present a novel smart contract vulnerability detection system
from source code that leverages both graph neural networks and expert knowledge.
They propose a temporal message propagation network (TMP) to extract features
from a normalized contract graph, similar to Zhuang et al. [162] (2021) due to shared
authorship. This extracted feature is then combined with pre-defined expert patterns
to form the final detection system. Notably, Liu et al. build upon their previous
work (Zhuang et al. [162], 2021) where they explored different GNN architectures,
including TMP. Here, they focus on enhancing TMP’s performance by integrating it
with expert patterns. This combined approach specifically targets the same three
vulnerabilities: reentrancy, timestamp dependence, and infinite loops.

The paper details the implementation of pattern extraction, highlighting both
simple and complex methods. Simple patterns like function calls and loop state-
ments are identified through keyword matching, while others like balance deductions
and timestamp assignments involve syntax analysis. For the complex “timestamp
contamination” pattern, taint analysis is employed to track data flow and identify
potentially affected variables. The final vulnerability detection integrates graph
features from critical variables and function calls with expert-defined security pat-
terns. This combined approach offers potentially improved accuracy compared to

85

CHAPTER 3. RELATED WORK

solely relying on GNNs. However, it’s crucial to acknowledge that the dependence
on expert-defined security patterns could necessitate considerable effort for expansion
to encompass the vast array of vulnerabilities addressed by our tools.

However, despite the promising approach, our evaluation encountered limitations
because readily available tools for benchmarking and deployment are missing. While
the source code is available, it lacks crucial files necessary for building and training
the models or deploying them as a tool. Unfortunately, our attempts to contact
the authors for assistance haven’t been successful. In summary, Liu et al.’s work
presents a promising direction for integrating expert knowledge with GNNs for smart
contract vulnerability detection. However, the lack of readily available tools and
unresponsive authors hinder further assessment and potential real-world application.

Zhang et al. [159] (2022) presented two machine learning techniques, ASGVulDe-
tector and BASGVulDetector, for pinpointing four specific vulnerabilities (reentrancy,
timestamp dependency, block info dependency, and tx.origin) in smart contracts.
Their approach analyzes contracts from both source code and bytecode perspectives.
The key innovation lies in the “abstract semantic graph” (ASG), designed to cap-
ture the syntax and semantics of smart contract code. For source code analysis,
ASGVulDetector builds upon the traditional Abstract Syntax Tree (AST) by in-
corporating control and data flow information. When source code is unavailable,
BASGVulDetector constructs the ASG by decompiling and enriching basic block
sequences with control flow data. This ASG serves as the input for graph neural
networks (GNNs) and graph matching networks (GMNs), which assess contract
similarities. By comparing contracts to labeled vulnerable ones, these networks
can identify potential vulnerabilities. The process involves multi-layer perceptrons
(MLPs) to encode node and edge features, followed by a gated graph neural network
(GGNN) for graph embedding.

However, a critical limitation lies in the dependency on a limited set of labeled
vulnerable contracts. Zhang et al.’s model relies on a predetermined similarity
threshold of 0.85 for vulnerability detection. This means any new contract with
vulnerabilities, especially those dissimilar to the established dataset, will likely go
undetected. In contrast, our DLVA model bypasses this limitation, expertly analyzing
and judging contracts even if their similarity to known vulnerabilities falls below the
predefined threshold.

86

CHAPTER 3. RELATED WORK

While Zhang et al. reported promising performance, all artifacts related to
their work, including the trained models, remain unavailable, hindering independent
benchmarking and further investigation by the research community. This lack of
transparency limits the broader adoption and generalizability of their proposed
methods.

Nguyen et al. [103, 104] (2022)25 introduced MANDO-GURU, a deep learning
tool utilizing control-flow and call graphs from Solidity source code to detect seven
vulnerabilities, including reentrancy and time manipulation. Its novel aspect lies in
heterogeneous graph attention neural networks that capture complex relationships
within these graphs, enabling vulnerability detection. MANDO-GURU builds het-
erogeneous contract graphs merging the graphs to capture Solidity’s unique features
and leverage specialized metapaths to construct its neural networks. These networks
learn multi-tiered embeddings of contracts, enabling vulnerability recognition in new
code.

While MANDO-GURU exhibits promise, concerns arise regarding its accessibility
and generalizability. The training data for each vulnerability is limited (less than
200 samples), potentially hindering the model’s performance on larger datasets.
Furthermore, the tool’s current availability is restricted – accessible only through a
web-based system and potentially via an API, though the latter remains untested
and the authors haven’t provided further assistance. Consequently, we were unable
to benchmark MANDO-GURU against our datasets. Instead, we test our own tool,
DLVA, on MANDO-GURU’s dataset for the shared vulnerabilities (reentrancy and
time manipulation). DLVA achieved superior Macro-F1 scores (91.5% and 95%,
respectively) compared to MANDO-GURU’s reported scores (80.78% and 86.76%).

While this suggests promise for DLVA, limitations remain. MANDO-GURU’s pa-
per doesn’t clarify which dataset subsets were used for training and testing, hindering
a more accurate comparison. Therefore, running DLVA on the entire MANDO-
GURU dataset provides only partial insight. In summary, MANDO-GURU exhibits
promising features for smart contract vulnerability detection. Our initial comparison
using DLVA shows promise, further investigation with improved transparency from
MANDO-GURU’s authors is crucial for a comprehensive evaluation.

25Nguyen et al. [103, 104] (MANDO-GURU) is available: http://mandoguru.com/, this
web-based system allows to test the contracts one by one.

87

http://mandoguru.com/

CHAPTER 3. RELATED WORK

Wang et al. [142] (2022) developed GVD-net, a vulnerability detection method
specifically designed for Solidity smart contracts. It operates by first constructing a
Control Flow Graph (CFG) that captures the relationships between variables and
function calls within the source code. This CFG serves as a blueprint to create a
non-Euclidean graph representing the contract’s structural features. Subsequently,
GVD-net employs the Node2Vec graph embedding algorithm to generate a 256-
dimensional vector, encoding the contract’s characteristics. This vector becomes the
basis for conducting similarity analysis and identifying potential vulnerabilities.

GVD-net focuses on detecting three specific vulnerability types: arithmetic
issues, access control flaws, and asset freezing vulnerabilities. The authors reported
promising results, demonstrating GVD-net’s effectiveness in comparison with well-
known tools like Oyente and Manticore. However, the lack of publicly available
artifacts, including the tool itself, datasets, and source code, prevents independent
benchmarking and evaluation on an independent test set. This limited accessibility
hinders a thorough assessment of GVD-net’s strengths and weaknesses relative to
other approaches, making it difficult to fully gauge its practical potential.

Liu et al. [90] (2022) proposed S_HGTNs, a Heterogeneous Graph Transformer
Network framework designed for smart contract anomaly detection on the Ethereum
platform, specifically targeting financial fraud. This approach leverages a rich set of
contract information by incorporating both transaction data and source code features.
The source code undergoes preprocessing and Doc2Vec embedding to translate it
into vector representations. S_HGTNs operates by constructing a Heterogeneous
Information Network (HIN) that captures diverse relationships between nodes in
the network. It utilizes the concept of meta-paths, essentially multi-hop connections
among nodes, to effectively navigate the HIN’s complex structure. This allows the
model to extract comprehensive information from the network and represent it as a
meta-path network. Finally, S_HGTNs leverages the learned node embeddings to
perform the anomaly detection task.

While the classification results demonstrate the effectiveness and stability of
S_HGTNs, the study’s conclusions are limited by two key factors. Firstly, the authors
primarily compared S_HGTNs to various neural network variants, lacking direct
comparisons with existing state-of-the-art anomaly detection tools. Additionally,
the absence of publicly available artifacts, including the tool itself, datasets, and

88

CHAPTER 3. RELATED WORK

source code, prevents independent investigation and comprehensive benchmarking.
Furthermore, the lack of common vulnerabilities shared with our tools precludes
comparative analysis. This limited accessibility hinders a thorough evaluation of
S_HGTNs’s strengths and weaknesses relative to other approaches, making it
difficult to fully assess its potential in real-world applications.

3.3 Learning-based Techniques for PL
This section explores the evolution of learning-based methods for vulnerability

detection in mainstream programming languages (PL). Recent years have seen the
emergence of learning-based models as powerful tools for detecting vulnerabilities in
the source and binary code of general programming languages like C/C++, Python,
and Java. These models excel at identifying subtle patterns and correlations within
large datasets, allowing them to automatically extract meaningful features from
raw code and pinpoint hidden patterns indicative of vulnerabilities. This capability
is invaluable in vulnerability detection, as vulnerabilities often manifest through
intricate code characteristics and dependencies.

Unlike the smart contracts domain, which lacks readily available and stable
datasets for benchmarking and research, the field of general programming languages
(PL) boasts a wealth of resources. This abundance of data facilitates the development
and deployment of increasingly sophisticated models.

Figure 3.3 visually summarizes 12 key studies and tools, categorized by four
crucial aspects: tool availability, dataset availability, analysis level (source code or
binary), and analysis technique (sequential deep learning or graph deep learning).
Table 3.3 provides corresponding paper references for each analysis technique.

The following subsections will delve deeper into each study, grouped by their
analysis technique. This methodical approach ensures a focused exploration of
individual tools and their contributions to the field of general programming languages
(PL) vulnerability detection.

3.3.1 Sequential Deep Learning (Seq. DL) Studies/Tools:

Phan et al. [108] (2017) proposed a novel two-step method for automatically
discovering software defects. The first step involves constructing Control Flow Graphs

89

CHAPTER 3. RELATED WORK

Figure 3.3: Learning-based Techniques for PL in primary studies.

(CFGs) from the assembly instructions generated during source code compilation.
These graphs visually represent the program’s execution flow, providing valuable
insights into its behavior. In the second step, a deep neural network called a Directed
Graph-based Convolutional Neural Network (DGCNN) is applied to the extracted
CFG datasets. This powerful network automatically learns hidden features within
the CFGs that are indicative of defects. By leveraging the rich information within
CFGs and the robust learning capabilities of DGCNNs, this approach enables the
automatic construction of predictive models for defect detection. This paves the
way for significant advancements in software quality assurance by automating the
crucial step of defect identification.

Russell et al. [113] (2018) utilized the extensive repository of open-source C and
C++ code to create a comprehensive machine learning-based system for detecting
vulnerabilities at the function level on a large scale. They employ feature-extraction
methods akin to those utilized in sentence sentiment classification, employing Con-

90

CHAPTER 3. RELATED WORK

Metric Category #Studies References
Tool Availability Available 4 [94, 87, 30, 143]

Not Available 8 [108, 113, 88, 161, 18,
131, 151, 155]

Dataset Availability Available 11 [108, 113, 88, 94, 161,
18, 151, 155, 87, 30,
143]

Not Available 1 [131]
Analysis Levels Binary 4 [108, 94, 131, 151]

Source code 8 [113, 88, 161, 18, 155,
87, 30, 143]

Analysis Techniques Seq. DL 8 [108, 113, 88, 18, 131,
151, 87, 143]

Graph DL 4 [94, 161, 155, 30]

Table 3.3: Learning-based Techniques for PL in primary studies.

volutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) for
classifying vulnerabilities at the function-level in source code. This approach disre-
gards the program code’s execution flow, treating it solely as a sequence of tokens
without considering its execution flow.

Li et al. [88] (2018) introduced VulDeePecker, which has an innovative dataset
tailored for assessing the effectiveness of deep learning-based vulnerability detection
systems. Central to VulDeePecker’s methodology is the proposal of “code gadgets”
or slices, which represent segments of programs. These code gadgets encompass se-
mantically related lines of code, allowing for vectorization and subsequent utilization
as input for deep learning models. Within the VulDeePecker framework, the learning
phase involves processing a significant volume of training programs, comprising both
vulnerable and non-vulnerable instances. Initially, it extracts library/ABI function
calls from these programs and then identifies program slices linked to the arguments
of these calls. Subsequently, it encodes the symbolic representations of these code
gadgets into vectors using word2vec. These vectorized representations serve as input
for training a Bidirectional Long Short-Term Memory (BLSTM) neural network.
The outcome of the learning phase is the extraction of vulnerability patterns, which
are encoded within the BLSTM neural network. This approach aims to effectively
discern vulnerabilities within program code, establishing a mechanism for deep
learning-based vulnerability detection systems. However, it’s important to note that

91

CHAPTER 3. RELATED WORK

a model trained solely on a synthetic dataset composed of simple patterns may
encounter limitations in detecting only those basic patterns that infrequently occur
in real-life scenarios. Additionally, it’s essential to acknowledge another limitation:
the token-based model operates under the assumption of linear token dependency.
Consequently, it primarily considers lexical dependencies among tokens, neglect-
ing semantic dependencies that frequently hold significant roles in vulnerability
prediction.

Bilgin et al. [18] (2020) investigated the use of machine learning to predict
software vulnerabilities from source code. It first divides source code into smaller
units like functions. Next, for each function, it generates and extracts an abstract
syntax tree (AST), employing a lexer for tokenization. The extracted AST is then
transformed into a complete binary tree with a deterministic shape, where the
number of nodes per level is predefined. Finally, each token in the complete binary
AST is encoded as a pre-defined numerical tuple and subsequently concatenated from
the root to leaves to obtain a one-dimensional numerical array representation of the
corresponding function-level source code. This representation serves as the input for
the machine learning model for vulnerability prediction. However, there are concerns
regarding the manual feature engineering aspect of the process. The method involves
the manual construction of a set of predetermined numerical features for each token,
resulting in a labor-intensive and resource-costly procedure. This manual feature
engineering approach may be time-consuming and inefficient, potentially hindering
scalability and adaptability in handling diverse codebases and environments.

Tian et al. [131] (2021) introduced BinDeep, a deep learning methodology tailored
to identify similarities between functions within binary code. The process begins
by extracting the instruction sequences from individual functions, which are then
transformed into numerical features using a word2vec embedding model. Through
this conversion, the instructions are represented as numerical values. Subsequently,
a Recurrent Neural Network (RNN) is employed to generate embeddings for each
function. These embeddings encapsulate the fundamental functionality of the
respective functions. BinDeep further employs Siamese neural networks, integrating
Long Short-Term Memory (LSTM) and Convolutional Neural Network (CNN)
architectures, to evaluate the similarity between the embedded representations of two
functions. This approach showcases a notable efficiency in identifying resemblances

92

CHAPTER 3. RELATED WORK

between functions, even in scenarios where the functions are obfuscated or compiled
using different tools.

Yan et al. [151] (2021) introduced HAN-BSVD, a hierarchical attention network
designed specifically for detecting vulnerabilities in binary software. HAN-BSVD
employs a multi-step process. Initially, it enhances contextual information by elim-
inating irrelevant jump addresses and normalizing instructions. Following this
enhancement, it constructs an instruction embedding network utilizing Bi-GRU
and a word-attention module to effectively preserve the enriched contextual in-
formation. Finally, a feature extraction network, incorporating Text-CNN with
a spatial-attention module, facilitates the capture of local features and accentu-
ates critical regions, ultimately enhancing the overall performance of vulnerability
detection.

Li et al. [87] (2021)26 proposed SySeVR which introduces two fundamental
concepts: Syntax-based Vulnerability Candidates (SyVCs) and Semantics-based
Vulnerability Candidates (SeVCs). SyVCs capture syntax-related vulnerability
characteristics, while SeVCs extend SyVCs to encompass semantic aspects induced
by data and control dependencies. In its approach to vulnerability detection, SySeVR
employs various neural networks. Initially, it leverages syntax traits to identify
SyVCs, serving as an initial step for vulnerability detection. However, SyVCs
lack sufficient semantic information necessary for training deep learning models.
SeVCs bridge this gap by extending SyVCs with semantically related statements,
induced by control and data dependencies. To encode SeVC symbols into fixed-
length vectors, SySeVR utilizes word2vec. This framework facilitates the use of
multiple neural networks for detecting diverse vulnerabilities. Notably, Bidirectional
Gated Recurrent Units (BGRU) within Bidirectional Recurrent Neural Networks
(RNNs) demonstrate heightened effectiveness compared to unidirectional RNNs and
Convolutional Neural Networks (CNNs). Nonetheless, it’s crucial to acknowledge
the potential limitations of models trained solely on synthetic datasets, as they may
primarily detect simple patterns that are rare in real-world scenarios.

Wartschinski et al. [143] (2022)27 introduced Vudenc, a deep learning-based
26Li et al. [87] (SySeVR) is available: https://github.com/SySeVR/SySeVR
27Wartschinski et al. [143] (VUDENC) is available: https://github.com/LauraWartschinski

/VulnerabilityDetection

93

https://github.com/SySeVR/SySeVR
https://github.com/LauraWartschinski/VulnerabilityDetection
https://github.com/LauraWartschinski/VulnerabilityDetection

CHAPTER 3. RELATED WORK

tool designed for automated feature learning from an extensive real-world Python
code repository to detect vulnerabilities. Leveraging a word2vec model, Vudenc
identifies code tokens with semantic similarity, generating vector representations.
It subsequently employs a network of Long Short-Term Memory cells (LSTMs) for
fine-grained classification of sequences of vulnerable code tokens. This process not
only pinpoints potential vulnerability areas within the source code but also offers
confidence levels for its predictions.

3.3.2 Graph Deep Learning (Graph DL) Studies/Tools:

Massarelli et al. [94] (2019)28 introduced a novel method for analyzing binary
code by applying graph embedding techniques to control flow graphs (CFGs). This
innovative approach leverages the power of machine learning to extract meaningful
features from assembly instructions and identify relationships within the program’s
execution flow. At the heart of the method lies word2vec, a popular word embedding
model. Similar to how word2vec learns representations for words in natural language,
Massarelli et al. adapt it to capture the semantic meaning of individual assembly
instructions. This allows them to encode the essence of each instruction within a
low-dimensional vector space. To capture the global structure of the CFG, Massarelli
et al. employ Structure2Vec. This powerful technique combines the node features
with the graph’s structural information, generating a comprehensive embedding
vector that encapsulates the entire program’s control flow. The resulting CFG
embeddings are then used for two distinct tasks: binary similarity by comparing the
cosine similarity between CFG embeddings, and compiler provenance identification
by training a feed-forward neural network on labeled CFG embeddings to predict
the compiler used to generate the binary code. Massarelli et al.’s work demonstrates
the effectiveness of graph embedding techniques for analyzing binary code.

Zhou et al. [161] (2019) proposed Devign, a novel graph neural network model
for vulnerability detection in source code. It leverages a rich set of semantic
representations extracted from the source code and constructs a comprehensive
graph. A novel Conv module efficiently extracts features from the learned node
representations for graph-level classification. The model is trained on manually

28Massarelli et al. [94] is available: https://github.com/lucamassarelli/Unsupervised-Fea
tures-Learning-For-Binary-Similarity

94

https://github.com/lucamassarelli/Unsupervised-Features-Learning-For-Binary-Similarity
https://github.com/lucamassarelli/Unsupervised-Features-Learning-For-Binary-Similarity

CHAPTER 3. RELATED WORK

labeled datasets built on 4 large-scale, diverse open-source C projects, reflecting
real-world complexity and variety, unlike previous work that relied on synthetic
code.

Zeng et al. [155] (2021) proposed GCN2defect, an extension of GCN designed
to enhance software defect prediction by learning to encode software dependency
networks automatically. It begins by constructing a Class Dependency Network
for a program. Through node2vec, it learns embedded representations, capturing
the structural features of the network based on a set of manually designed metrics.
Subsequently, GCN2defect merges these learned structural features with conventional
source code manually designed features to initialize node attributes within the Class
Dependency Network. This combined information is then fed into GCN, allowing
for the generation of deeper representations of the class. It’s important to note that
this approach treats the entire class as a single node within the project graph and
does not consider the Control Flow Graph (CFG) of the class code.

Chakraborty et al. [30] (2021)29 introduced REVEAL, a novel approach by em-
ploying a graph-based embedding derived from real-world source code using a Gated
Graph Neural Network (GGNN). Initially, it extracts both syntax and semantics
from the code via a Code Property Graph (CPG). Each code fragment within the
graph is then encoded into a feature vector using a word2vec embedding model. The
final step in preprocessing is to aggregate all the nodes embedding to create a single
vector representing the whole CPG. Following this encoding process, REVEAL pro-
ceeds to train a representation learner on the extracted features. This learner aims to
derive an optimal representation that effectively distinguishes vulnerable source code
from non-vulnerable instances. It’s noteworthy that REVEAL utilizes GGNN-based
feature embedding, complemented by techniques like SMOTE (Synthetic Minority
Over-sampling Technique) and representation learning. These methods address
challenges associated with data duplication, imbalanced data distribution, and lack
of separability in the dataset. As a result, REVEAL demonstrates significant im-
provements, achieving up to a 33.57% increase in precision and a 128.38% increase
in recall compared to existing state-of-the-art methods.

29Chakraborty et al. [30] (REVEAL) is available: https://git.io/Jf6IA

95

https://git.io/Jf6IA

CHAPTER 3. RELATED WORK

3.4 Data Sources and Benchmarks
This section focuses on data sources and benchmarks availability. While manual

efforts to classify Ethereum smart contracts exist and deserve recognition, achieving
a comprehensive and universally accepted ground truth remains elusive. To address
this gap, we delve into publicly available and documented Ethereum smart contract
benchmark sets containing manually verified ground truth data. We focus on datasets
generated through meticulous manual contract checking or deliberate bug injection
to ensure the highest quality ground truth possible. These datasets fall into two
distinct categories based on their origin, summarized in Table 3.4 (The final column
in the table indicates whether our tools have been tested on these datasets or not):

• Manually Crafted Datasets (4 datasets): A significant proportion of these
contracts are real-world contracts that may or may not have been modified by
the authors. Notably, some contracts within these datasets may be author-
created but not publicly accessible on the chain. Analysis of these contracts
necessitates the explicit provision of their source code and/or bytecode.

• Real World Datasets (11 datasets): These datasets offer a crucial testing
ground for smart contract vulnerability detection tools. They contain contracts
that have actually been deployed on the public Ethereum chain, providing
a realistic representation of the complexities and challenges faced in real-
world scenarios. Importantly, all contracts within these datasets, except
for self-destructed ones, have unique addresses on the chain. This allows
researchers to conveniently retrieve their source code (if available) and/or
bytecode for analysis directly using these addresses. While this process can
be time-consuming for exceptionally large datasets, it offers a significant
advantage over manually crafted datasets, providing invaluable insights into
the vulnerabilities present in actively deployed contracts.

The following subsections will delve into each dataset within their respective
groups, providing a detailed examination of their characteristics and suitability for
various evaluation purposes. This comprehensive analysis aims to equip researchers
and developers with a deeper understanding of available ground truth resources,
facilitating the development of more robust and effective tools for Ethereum smart

96

CHAPTER 3. RELATED WORK

contract security analysis. Our findings show that there’s a lack of reliable benchmarks
for assessing smart contract vulnerability detection. Developing robust benchmarks
is a critical need for the blockchain security community.

3.4.1 Manually Crafted Datasets:

Durieux et al. [41] (2020)30 propose SmartBugs Curated, which is a valuable
resource for researchers in Solidity smart contract security. It comprises 69 carefully
chosen contracts annotated with 115 vulnerabilities falling into ten categories in-
cluding reentrancy, integer overflow, and access control issues. The lines containing
each vulnerability are precisely tagged by the authors, facilitating the evaluation
of new analysis tools. Compared to other datasets, SmartBugs focuses on diverse
and realistic vulnerabilities, making it highly relevant for practical security research.
However, it’s important to note that the dataset primarily includes smaller contracts
and may not fully represent the entire range of real-world smart contracts.

SWC Dataset (2020)31 is a taxonomy of 37 vulnerabilities and weaknesses found
in smart contracts, aimed at standardizing the way these issues are identified
and categorized. It helps developers, security researchers, and other stakeholders
understand the nature and potential impact of different smart contract problems. It
categorizes weaknesses like reentrancy and access control flaws, providing a common
language for communication and facilitating security analysis tools.

Ghaleb et al. [54] (2020)32 present SolidiFI benchmark as a dataset of buggy smart
contracts designed to evaluate the effectiveness of static analysis tools for Solidity
code. It contains over 9,300 bugs injected into 350 contracts across 7 categories,
including reentrancy, integer overflows, and timestamp dependencies. These “buggy”
contracts serve as test cases for analysis tools, allowing researchers and developers
to assess their ability to detect and flag vulnerabilities. Additionally, the benchmark
provides injection logs revealing where and how each bug was inserted, enabling
further analysis and understanding of smart contract weaknesses. Overall, SolidiFI
Benchmark can play a crucial role in advancing the development of reliable and

30Durieux et al. [41] (SmartBugs Curated Dataset) is available: https://github.com/smartbu
gs/smartbugs-curated/blob/main/ICSE2020_curated_69.txt

31SWC Dataset is available: https://swcregistry.io/
32Ghaleb et al. [54] (SolidiFI Dataset) is available: https://github.com/DependableSystems

Lab/SolidiFI-benchmark

97

https://github.com/smartbugs/smartbugs-curated/blob/main/ICSE2020_curated_69.txt
https://github.com/smartbugs/smartbugs-curated/blob/main/ICSE2020_curated_69.txt
https://swcregistry.io/
https://github.com/DependableSystemsLab/SolidiFI-benchmark
https://github.com/DependableSystemsLab/SolidiFI-benchmark

CHAPTER 3. RELATED WORK

Category Dataset #Samples #Vul Benchmarked by our tools

Manually
Crafted
Datasets

SmartBugs
Curated [41]

69 10 Easy: It is included as part of
our benchmark [7].

SWC 37 37 Easy: It isn’t included due to
limited number of samples per
vulnerability.

SolidiFI [54] 350 7 Easy: We created our challeng-
ing benchmark [13] based on
SolidiFI bug injection method.

Gigahorse 275 9 Easy: Most samples are part of
our benchmark [11].

Real
World
Datasets

Contract-
fuzzer [76]

416 7 Possible: It isn’t included due
to lacking samples of non-
vulnerable contracts.

Zeus [78] 1,524 7 Hard, it isn’t included due to
its labelling inconsistency.

SmartBugs
Wild [41]

47,398 0 Difficult: Not included because
it is an unlabeled dataset, re-
quiring huge effort to label.

Ever-evolving
Game [160]

1,265 6 Possible: It isn’t included due
to lacking source and bytecode.

TSE-
Contract-
Defect [31]

587 9 Possible: It isn’t included due
to lacking both source code and
bytecode, and potential incon-
sistencies in its labels.

eThor [116] 605 1 Possible: it is included as part
of our benchmark [10].

Horus [47] 1,655 4 Easy: it is included as part of
our benchmark [7].

Scrawld [152] 6,780 8 Easy: it isn’t included due to
the lack of manual verification
by the authors necessitates cau-
tion regarding the accuracy of
the labels.

Forta 753 1 Easy: it isn’t included due to
the absence of a shared vulner-
ability detectable by our tools.

MANDO-
GURU [103]

493 7 Easy: it is included in our com-
parison with [103, 104].

SC_UEE [71] 4,364 10 Possible: it isn’t included be-
cause access to the dataset is
granted upon reasonable re-
quest.

Table 3.4: Data Sources and Benchmarks.

98

CHAPTER 3. RELATED WORK

effective smart contract analysis tools, ultimately contributing to the security of
blockchain applications.

Gigahorse Dataset (2021)33 offers a diverse collection of 275 smart contracts
(source and bytecode) labeled with nine common vulnerabilities (e.g., reentrancy,
integer overflow). Some contracts are derived from SmartBugs Curated, engineered
to showcase typical vulnerability patterns. This balanced mix of 109 vulnerable and
166 safe contracts makes it suitable for evaluating both vulnerability detection and
false positive rates of analysis tools.

3.4.2 Real World Datasets:

Jiang et al. [76] (2018)34 provide Contractfuzzer dataset as a valuable resource
for researchers and developers working on smart contract security. Contractfuzzer
dataset features 416 manually verified vulnerable smart contracts of seven vulnera-
bilities, analyzed using the ContractFuzzer tool. This collection includes both source
code and bytecode for further analysis, offering valuable insights into real-world
vulnerabilities. However, it’s important to note that the dataset focuses solely on
confirmed vulnerable examples, lacking cases of non-vulnerable contracts. This
makes it suitable for testing and evaluating the accuracy of smart contract analysis
tools, but not for measuring false positives rate.

Kalra et al. [78] (2018)35 present Zeus dataset, which offers a collection of 1,524
contracts categorized based on the Zeus tool’s vulnerability assessment for seven
types of vulnerabilities. However, no source code or bytecode is provided, and the
authors of the dataset haven’t responded to requests for further details on their
labeling methodology. Notably, the eThor paper [115] identified inconsistencies in
the Zeus dataset’s labeling practices, particularly within section D.5 of the eThor
extended version. Through careful filtering, the eThor authors reduced the dataset
from 1,524 to 720 contracts deemed more reliable for their analysis. While the
Zeus dataset provides a starting point for exploring potential vulnerabilities, its
limitations and inconsistencies warrant caution in interpreting its results.

33Gigahorse Dataset is available: https://github.com/nevillegrech/gigahorse-benchmarks
34Jiang et al. [76] (Contractfuzzer Dataset) is available: https://github.com/gongbell/Cont

ractFuzzer/tree/master/examples
35Kalra et al. [78] (Zeus Dataset) is available: https://goo.gl/kFNHy3

99

https://github.com/nevillegrech/gigahorse-benchmarks
https://github.com/gongbell/ContractFuzzer/tree/master/examples
https://github.com/gongbell/ContractFuzzer/tree/master/examples
https://goo.gl/kFNHy3

CHAPTER 3. RELATED WORK

Durieux et al. [41] (2020)36 propose SmartBugs Wild, comprising 47,398 Solidity
smart contract source codes extracted from the Ethereum blockchain, presents a
unique challenge for researchers and developers. While the exact vulnerabilities
within these contracts remain unknown, the dataset’s vast size and real-world
origin make it invaluable for identifying potential vulnerabilities and gauging their
prevalence. However, it’s important to acknowledge the limitations of working
with unknown vulnerabilities, such as the possibility of false positives or negatives.
Despite these challenges, the SmartBugs Wild Dataset has already been successfully
used to identify several real-world vulnerabilities and compare various analysis tools,
demonstrating its potential for advancing smart contract security research.

Zhou et al. [160] (2020)37 present Ever-evolving Game dataset as a collection of
1,265 smart contracts categorized based on six prevalent vulnerabilities, including
reentrancy and integer overflow. To ensure accurate vulnerability identification, the
authors meticulously validate the labels through manual analysis of the contracts’
transaction histories. Notably, Ever-evolving Game dataset only offers contract
addresses and vulnerability labels, lacking both source code and bytecode represen-
tations.

Chen et al. [31] (2020)38 present TSE-ContractDefect dataset as a collection
of 587 manually labeled smart contracts exhibiting 20 diverse contract defects,
including 9 classified as security vulnerabilities. While the dataset’s size is relatively
small, we identified potential inconsistencies in its labels. For example, some
contracts tagged with security vulnerabilities like reentrancy (such as the address
0x53a54c442583d2e844733f179d142c32f3c004b7) seemed protected by the onlyOwner
modifier, potentially mitigating real-world exploitability despite the theoretical
vulnerability. Further investigation into such cases is encouraged to refine the
dataset’s accuracy and enhance its usefulness for research and evaluation purposes.
Notably, TSE-ContractDefect dataset only offers contract addresses and vulnerability
labels, lacking source code and bytecode representations.

36Durieux et al. [41] (SmartBugs Wild Dataset) is available: https://github.com/smartbugs
/smartbugs-wild

37Zhou et al. [160] (Ever-evolving Game Dataset) is available: https://drive.google.com/f
ile/d/1xLssDxYWyKFCwS5HUrQaSex0uwJRSvDi/view

38Chen et al. [31] (TSE-ContractDefect Dataset) is available: https://github.com/Jiachi-C
hen/TSE-ContractDefects/blob/master/ContractDefects.csv

100

https://github.com/smartbugs/smartbugs-wild
https://github.com/smartbugs/smartbugs-wild
https://drive.google.com/file/d/1xLssDxYWyKFCwS5HUrQaSex0uwJRSvDi/view
https://drive.google.com/file/d/1xLssDxYWyKFCwS5HUrQaSex0uwJRSvDi/view
https://github.com/Jiachi-Chen/TSE-ContractDefects/blob/master/ContractDefects.csv
https://github.com/Jiachi-Chen/TSE-ContractDefects/blob/master/ContractDefects.csv

CHAPTER 3. RELATED WORK

Schneidewind et al. [116] (2020)39 provide eThor dataset, which is a collection of
605 smart contracts with source code and bytecode, focusing solely on the reentrancy
vulnerability. However, the authors’ definition of reentrancy diverges significantly
from the common description (e.g., SWE-107), leading to a “wide divergence in
ground truth.” Additionally, the dataset focuses on a specific type of reentrancy
(“single-entrancy”), further complicating comparison with other datasets. These
limitations present challenges for interpreting the eThor dataset and utilizing it for
standard benchmarking practices. While its unique focus on a specific vulnerability
and the availability of source code and bytecode offer potential benefits for certain
research tasks, researchers should carefully consider these limitations when utilizing
the eThor dataset for their studies.

Ferreira et al. [47] (2021)40 introduce Horus dataset, which stands out by focusing
on real-world attack detection rather than just identifying vulnerable contracts. It
presents a collection of 1,655 unique smart contracts, each vulnerable to one of
four common vulnerabilities like reentrancy and parity bug. The dataset’s true
strength lies in its rich collection of 129,863 annotated transactions, meticulously
labeled as benign (122,830) or attacker-initiated (7,041). This unique combination
provides valuable insights into real-world attack patterns and the dynamics of on-
chain exploits. Importantly, Horus offers bytecode representations for all contracts,
facilitating straightforward benchmarking and enabling researchers to test and
evaluate attack detection tools.

Yashavant et al. [152] (2022)41 present Scrawld dataset, which offers a valuable
resource for researchers studying smart contract security, featuring 6,780 real-world
contracts from the Ethereum network. This large dataset covers eight diverse vulner-
ability categories, labeled using five automated analysis tools (Slither, Smartcheck,
Mythril, Oyente, Osiris) through majority voting. While the lack of manual veri-
fication by the authors necessitates caution regarding the accuracy of the labels,
Scrawld’s size and diversity make it valuable for studying the prevalence of vulnera-
bilities in real-world contracts, and analyzing the performance of different analysis
methods.

39Schneidewind et al. [116] (eThor Dataset) is available: https://secpriv.wien/ethor/
40Ferreira et al. [47] (Horus Dataset) is available: https://github.com/christoftorres/Elys

ium/tree/main/evaluation/datasets/Horus
41Yashavant et al. [152] (Scrawld Dataset) is available: https://github.com/sujeetc/ScrawlD

101

https://secpriv.wien/ethor/
https://github.com/christoftorres/Elysium/tree/main/evaluation/datasets/Horus
https://github.com/christoftorres/Elysium/tree/main/evaluation/datasets/Horus
https://github.com/sujeetc/ScrawlD

CHAPTER 3. RELATED WORK

Forta Dataset (2022)42 provides two valuable datasets for researching smart
contract security. The first, hosted on GitHub, consists of 753 contracts identified
through their association with theft-related exploits, fraud-linked addresses, and other
malicious activities. This repository offers contract addresses, creator addresses,
and labels, but lacks source code and bytecode representations. Forta’s second
dataset, available on Hugging Face, comprises a larger collection of 70,000 contracts
with creation bytecode and malicious label. This rich dataset presents an excellent
opportunity for training anomaly detection models, making it a promising resource
for future research.

Nguyen et al. [103] (2022)43 introduce MANDO-GURU dataset, a comprehensive
compilation comprising 493 Solidity vulnerable contracts sourced from various
prior studies. This dataset encompasses seven distinct vulnerability types, such
as reentrancy and time manipulation, each containing a range of 44 to 95 positive
samples. Of significance, the MANDO-GURU dataset provides both source code
and bytecode representations for all contracts, housed within a separate repository
(https://github.com/MANDO-Project/ge-sc/tree/master/experiments/ge-s
c-data). This accessibility not only simplifies benchmarking procedures but also
empowers researchers by facilitating the evaluation and testing of attack detection
tools.

Hu et al. [71] (2023)44 present SC_UEE dataset, which is a recently released
dataset of 4,364 real-world Solidity smart contracts manually labeled with ten types
of vulnerabilities, including reentrancy, integer overflow, and timestamp dependency
issues. What sets SC_UEE apart is its unique focus on exploitability. Unlike other
datasets, the authors don’t just label contracts as vulnerable or not; they meticulously
analyze the source code of vulnerable contracts to judge whether they are actually
exploitable in practice. This additional layer of information makes SC_UEE a
valuable resource for researchers and developers working on smart contract security,
as it helps assess the true risk posed by vulnerabilities and prioritize mitigation
efforts.

42Forta Dataset is available: https://github.com/forta-network/labelled-datasets, and
https://huggingface.co/datasets/forta/malicious-smart-contract-dataset

43Nguyen et al. [103] (MANDO-GURU) is available: https://github.com/MANDO-Project/g
e-sc-machine/tree/master/sco/graph_labels

44Hu et al. [71] (SC_UEE Dataset) is available: https://github.com/1052445594/SC_UEE

102

https://github.com/MANDO-Project/ge-sc/tree/master/experiments/ge-sc-data
https://github.com/MANDO-Project/ge-sc/tree/master/experiments/ge-sc-data
https://github.com/forta-network/labelled-datasets
https://huggingface.co/datasets/forta/malicious-smart-contract-dataset
https://github.com/MANDO-Project/ge-sc-machine/tree/master/sco/graph_labels
https://github.com/MANDO-Project/ge-sc-machine/tree/master/sco/graph_labels
https://github.com/1052445594/SC_UEE

CHAPTER 3. RELATED WORK

3.5 Summary of Related Work
While Ethereum smart contract security is paramount, ensuring their safety is

a complex challenge. Most modern smart contract languages are Turing-complete,
allowing them to implement complex algorithms using languages like Solidity and
Vyper. The very expressiveness that makes them powerful is a double-edged sword,
as it also complicates their analysis. Moreover, many smart contract vulnerabilities
are more complex than many of the traditional bugs targeted by static analysis
techniques (e.g., null pointer dereferences). The intricacy inherent in smart contract
vulnerabilities poses significant challenges for analysis, and means that traditional
analysis techniques may not be sufficient.

Existing efficient techniques often rely on predefined patterns, which frequently
prove inadequate for handling real-world code scenarios. Conversely, methods
that yield more precise results often demand substantial computational resources,
leading to extended and/or infeasible processing times. Learning-based approaches,
particularly modern models like deep neural networks, offer a promising avenue.
Unlike the typical hand-coded patterns utilized in most static analyzers, these
advanced models possess the capability to comprehend exceedingly intricate feature
spaces. This advancement paves the way for more comprehensive and robust
detection of vulnerabilities in smart contracts.

There has been a notable surge in the adoption of learning-based techniques
for smart contract vulnerability detection in recent years. While their practical
implementation and readily available tools have not yet caught up to this growth,
the inherent flexibility and adaptability of these methods suggest a bright future in
bolstering smart contract defenses. Their potential to navigate the vast and evolving
landscape of vulnerabilities holds significant promise for surpassing the limitations
of traditional static and formal analysis methods. Therefore, it is highly likely that
learning-based techniques will play an increasingly important role in safeguarding
smart contracts against ever-sophisticated security threats.

Our Analysis Summary for:

1) Studies in Static and Dynamic Analysis (SA/DA) Methods for
SC: While the aforementioned limitations persist (§3.1), SA/DA methods

103

CHAPTER 3. RELATED WORK

demonstrate a notable advantage: 95.2% of studies offer readily available
tools, enabling researchers to effectively compare and benchmark proposed
solutions. 71.4% of studies also release a dataset, although in most cases this
dataset lacks ground truth labels; the authors estimate accuracy by manually
checking a small sample of the output (without disclosing which contracts or
the associated labels).

Two-thirds of studies possess the capability to directly analyze bytecode,
circumventing the need for often-unavailable source code, with an average
detection capacity of 7.7 vulnerabilities. This enhanced accessibility and source
code independence represent significant strengths of SA/DA methods within
the realm of smart contract vulnerability detection.

2) Studies in Learning-based Techniques for SC: Our survey indicates that
the application of ML/DL techniques for smart contracts vulnerability detection
has increased substantially in the past few years, with a large proportion of
papers are published in 2021 and 2022 (§3.2). However, current solutions suffer
from critical limitations that impede both their practical implementation and
our analysis.

First, very few (14.3%) of studies have available tools or artifacts for the
community to use, hindering adoption and real-world impact. By keeping their
tools and code closed-source, researchers create a significant barrier to entry
for other researchers and practitioners. This stifles collaboration, prevents
independent verification of results, and ultimately limits the broader application
of valuable discoveries. Figure 3.4 clearly demonstrates the stark difference
between open-source availability. In sharp contrast to the near-universal
open-source availability of SA/DA tools (only one of which—Zeus [78]—is
closed-source), learning-based tools lag far behind. This stark contrast is
the primary reason why, in subsequent chapters, we will focus on comparing
our open-source tools primarily to many existing SA/DA tools, and a few
learning-based tools.

Alarmingly, only 28.6% of studies released their datasets and benchmarks,
further hindering research and development efforts. Without shared datasets
and benchmarks, objective comparison and validation of different approaches

104

CHAPTER 3. RELATED WORK

Figure 3.4: Distribution of Tool Availability in SC vulnerability detection studies
over time; “Available*” with the asterisk denoting potential availability of some
studies upon request approval.

becomes difficult, impeding progress in the field. Moreover, since ML/DL tools
are built from the application code to training data, withholding the training
data is almost as bad as withholding the code.

Moreover, only 31.4% of studies can work directly with bytecode. Since only
1% of deployed contracts have their source code publicly available (according
to studies from [105] and [48]), this considerably restricts the applicability of
these tools. Figure 3.5 shows that static/dynamic analysis tools have tended to
focus on bytecode, whereas learning-based tools have tended to focus on source
code. This bytecode-centric approach means that static/dynamic analysis tools
can typically analyze a much broader range of contracts.

105

CHAPTER 3. RELATED WORK

Figure 3.5: Distribution of Analysis Levels in SC vulnerability detection studies over
time; “Source code*” with the asterisk denoting the analysis level for some studies
requires source code and/or potential alternatives like transactions or account data.

Our survey noted that 82.8% of studies used classic ML or sequential DL
models: treating programs as linear data, much like a natural language. Only
17.1% treated programs non-linearly by considering the execution flow of smart
contract code, suggesting a potential avenue for improvement in code analysis.
Our own DLVA and SCooLS tools use graph DL models to better extract
program semantics for classification.

Finally, ML/DL tools often exhibit a limited scope, with an average detection
capacity of only 4.6 vulnerabilities. Indeed, some do not distinguish the kind
of vulnerability at all. Merely flagging a contract as “vulnerable” without
specifying what kind of vulnerability is clearly less valuable than specifying

106

CHAPTER 3. RELATED WORK

which vulnerabilities are present (as DLVA does). More valuable still is
specifying which functions are concerning (as SCooLS does), or even which
program points. These are deep and ongoing challenges, and the trade-offs
are not obvious since the ML/DL techniques investigated to date seem to be
less compositional than SA techniques. Thus, identifying vulnerable functions
(as SCooLS does) can easily miss vulnerabilities that occur across function
boundaries; as we will see, DLVA has higher accuracy despite its less-specific
error localisation.

In summary, these limitations highlight the benefits of a paradigm shift.
First, a move towards open-source tools and publicly available datasets is
crucial. Second, methods that can function without relying on source code
are preferable. Third, exploring graph DL models that capture code execution
flow could enhance vulnerability detection capabilities. Finally, future research
should prioritize the development of tools capable of fine-grained vulnerability
type detection, enabling more precise and nuanced security solutions for the
rapidly growing smart contract ecosystem.

3) Studies in Learning-based Techniques for PL: The field of general
programming language (PL) vulnerability detection boasts a wealth of readily
available datasets and benchmarks, providing fertile ground for researchers
to develop innovative solutions (§3.3). In contrast to the poor availability of
ML/DL tools and datasets for smart contract analysis, the more established
field of general programming language vulnerability detectors has an abundance
of available resources, which helps researchers build new and improved tools
in this domain. Beyond the lack of public tools and datasets, smart contract
vulnerability detection presents a greater challenge than PL vulnerability
detection due to several key challenges:

Firstly, unlike traditional PL, smart contracts operate on a decentralized and
immutable blockchain, where deployed code cannot be patched or modified.
This means that any vulnerability, once exposed, becomes a permanent ex-
ploit point. This permanence further increases the value of high accuracy in
vulnerability detection.

107

CHAPTER 3. RELATED WORK

Secondly, compared to the extensive datasets available for PL vulnerabilities,
the field of smart contract security lacks a robust collection of labeled vul-
nerabilities. This scarcity of data hinders the development of accurate and
comprehensive vulnerability detection models, as machine learning algorithms
rely on large datasets to train and generalize effectively.

Thirdly, smart contracts often utilize specialized languages like Solidity or
Vyper, which differ significantly from mainstream languages like Java or Python.
These languages introduce new concepts and features, such as blockchain-
specific transactions and storage mechanisms, that can be challenging for
existing PL vulnerability detection techniques to handle effectively. This
necessitates the development of specialized analysis tools and techniques
tailored to the unique characteristics of smart contract languages.

Finally, the rapidly evolving nature of the blockchain ecosystem presents a
moving target for vulnerability detection. New attack vectors and exploit
patterns emerge constantly, demanding continual adaptation and refinement
of detection techniques. This dynamism requires solutions that can not only
identify known vulnerabilities but also anticipate and adapt to unforeseen
threats.

In summary, while the field of PL vulnerability detection benefits from estab-
lished resources and techniques, the unique characteristics and challenges of
smart contracts necessitate a tailored approach. Addressing the limitations
in training data availability, adapting to smart contract languages, and con-
tinuously evolving to counter new attack vectors are crucial for ensuring the
security of smart contracts and the broader blockchain ecosystem.

4) Studies in Data Sources and Benchmarks for SC: The scarcity of high-
quality benchmarks poses a significant obstacle in the advancement of smart
contract vulnerability detection. Two primary challenges hinder the develop-
ment and evaluation of robust detection methods: breadth and ground truth.
Breadth refers to both the quantity and diversity of contracts within a bench-
mark. It’s crucial to have a dataset that encompasses a substantial number
of contracts to ensure the generalizability of detection models. Additionally,
these contracts should mirror real-world examples rather than simplistic, hand-

108

CHAPTER 3. RELATED WORK

crafted test cases to ensure the practical relevance of findings. Ground truth,
on the other hand, emphasizes the accuracy and reliability of vulnerability
labels within a dataset. Unreliable or inaccurate labels can lead both to flawed
model development, and—even worse—an inaccurate understanding of tool
performance.

Despite the existence of 15 identified datasets and benchmarks (§3.4), re-
searchers must carefully consider the following challenges:

(A) The availability of samples for specific vulnerability types might be
restricted, hindering the application of machine learning techniques to
a broader range of vulnerabilities. Data augmentation techniques can
potentially alleviate this issue by artificially expanding the dataset.

(B) Class imbalance, i.e. where the number of samples in one class (e.g.,
vulnerable contracts) is significantly lower than the other class (e.g., non-
vulnerable contracts). This imbalance can negatively impact the model’s
ability to accurately detect the minority class. Therefore, it is essential
to ensure sufficient representation of vulnerable contracts in the training
set to achieve a high true positive rate.

Addressing these challenges in data availability and quality is critical for
the development of effective smart contract vulnerability detection methods.
Efforts in dataset curation, augmentation, and addressing class imbalance are
crucial for fostering a secure and reliable smart contract ecosystem.

The subsequent chapters of DLVA and SCooLS take a crucial step by delving
into the construction of our training datasets and test datasets/benchmarks.
In the spirit of open research and shared progress, we have made all datasets
publicly available [9, 8, 13, 7, 11, 10, 6, 12]. This includes both the training
data that fuels our research and the rigorous test datasets/benchmarks used to
evaluate our proposed methods. By readily sharing these valuable resources, we
aim to empower the community with the tools and data needed to accelerate
the development and comparison of emerging smart contract vulnerability
detection techniques. This open and collaborative approach will undoubtedly

109

CHAPTER 3. RELATED WORK

lead to more robust and effective solutions, ultimately advancing the security
of the entire blockchain ecosystem.

Our DLVA paper [3], presented at USENIX Security 2023, received the highest
recognition from the USENIX Artifact Evaluation Committee: all three badges
(Available, Functional, and Reproduced) [5]. This achievement means that not only
are all the research materials, including tools and data, freely available to the public,
but independent experts have also confirmed the validity and reliability of the paper’s
main findings. To the best of our knowledge, DLVA is the first learning-based smart
contract vulnerability detection research to earn this distinction.

3.6 Comparing Our Approach to State-of-the-Art
This thesis contributes to the field of smart contract vulnerability detection by

introducing novel approaches and tool implementations. To rigorously evaluate the
efficacy of our techniques, we conducted extensive benchmarking on benchmark
datasets unseen during training.

This rigorous testing against state-of-the-art tools provides valuable insights
into the relative strengths and weaknesses of our methods. The results demon-
strate impressive performance, highlighting the potential of our work to enhance
smart contract security and mitigate emerging vulnerabilities. We conclude by our
benchmarking results and the significance of independent evaluation as follows:

(A) Benchmarking results: Our extensive analysis of 35 studies in §3.2 revealed
a concerning trend: nearly half (48.6%) lack any comparisons to existing
state-of-the-art real tools when evaluating their smart contract learning-based
techniques. This dearth of benchmarking, crucial for accurate performance
assessment, is further amplified by the limited scope of comparisons observed in
studies that do include them. On average, studies only compare their proposed
methods to 1.9 other tools, with a maximum of 8 competitors evaluated in
a single study. Our work stands out in stark contrast to this trend. In the
case of DLVA, we rigorously benchmarked against a record-breaking eleven
competitors, while SCooLS was compared to three, exceeding the average by
a significant margin. This commitment to comprehensive and transparent

110

CHAPTER 3. RELATED WORK

benchmarking sets our work apart and ensures a more reliable evaluation of
our proposed techniques.

– DLVA [3, 4, 5]: As shown in Figures 3.6, 3.7, 3.8, 3.9, 3.10, DLVA is
benchmarked against eleven competitors (8 SA/DA analyzers + 3 ML/DL
analyzers). DLVA is on the far right. We use bar-and-whiskers where
star ⋆ represents the mean and plus + represents outliers. Along the
bottom we put the competitors, and in parenthesis the number of tests
we include in the benchmark for that competitor (not every tool can
handle every vulnerability).

We present five measures of performance. Overall, DLVA performed
extremely well. Figure 3.6 shows the Completion Rate (i.e., the percentage
of contracts for which a tool produces an answer rather than, e.g., raising
an exception, timing out, running out of memory, the higher the better).
Most suffered from the occasional timeout or etc. Many of the source code
analyzers were not able to analyze some contracts since the Solidity version
was too old or new45. eThor refused to analyze many contracts with
DELEGATECALL or CALLCODE opcodes, because eThor’s formal definition
is not accept these opcodes. Only DLVA, SaferSC, SMARTEMBED and
SmartCheck answered every query.

Arguably the most important metrics are Accuracy, the True Positive
Rate (TPR), and the False Positive Rate (FPR). We exclude any contract
that failed to complete from these metrics (i.e., we do not double count
failures). Figure 3.7 shows the True Positive Rate (i.e., detection rate; the
higher the better), eThor had a 100.0% TPR; SaferSC followed with 99.8%
TPR, Slither with 99.4% TPR, and DLVA came in fourth with 98.7%
TPR. Figure 3.8 shows the False Positive Rate (i.e., false alarm rate; the
lower the better), SAILFISH boasts an impressive 0.1% FPR, followed
by SMARTEMBED at 0.4% FPR, DLVA at 0.6%, and SmartCheck at
2.4% FPR.

45We made a good-faith effort to lightly clean source code to help them, but in many cases it
was not enough. We did exclude any contract for which source code was unavailable; Completion
Rates would have been far worse for source-only competitors otherwise.

111

CHAPTER 3. RELATED WORK

Figure 3.6: DLVA vs. STATE-OF-THE-ART Tools; Completion Rate (i.e., the
percentage of contracts for which a tool produces an answer rather than, e.g., raising
an exception, timing out, running out of memory, the higher the better) tested on
the Elysiumbenchmark [7], Reentrancybenchmark [11], and SolidiFIbenchmark [13]; star ⋆
indicates the mean; plus + indicates outliers

112

CHAPTER 3. RELATED WORK

Figure 3.7: DLVA vs. STATE-OF-THE-ART Tools; True Positive Rate
(i.e., detection rate; the higher the better) tested on the Elysiumbenchmark [7],
Reentrancybenchmark [11], and SolidiFIbenchmark [13]; star ⋆ indicates the mean; plus +
indicates outliers

113

CHAPTER 3. RELATED WORK

Figure 3.8: DLVA vs. STATE-OF-THE-ART Tools; False Positive Rate
(i.e., false alarm rate; the lower the better) tested on the Elysiumbenchmark [7],
Reentrancybenchmark [11], and SolidiFIbenchmark [13]; star ⋆ indicates the mean; plus +
indicates outliers

114

CHAPTER 3. RELATED WORK

Figure 3.9: DLVA vs. STATE-OF-THE-ART Tools; Accuracy (the higher the better)
tested on the Elysiumbenchmark [7], Reentrancybenchmark [11], and SolidiFIbenchmark [13];
star ⋆ indicates the mean; plus + indicates outliers

115

CHAPTER 3. RELATED WORK

Figure 3.10: DLVA vs. STATE-OF-THE-ART Tools; Average analysis time per con-
tract (the graph is in log scale, the lower the better) tested on the Elysiumbenchmark [7],
Reentrancybenchmark [11], and SolidiFIbenchmark [13]; star ⋆ indicates the mean; plus +
indicates outliers

In Figures 3.9, DLVA led the pack in accuracy at 99.7%, Slither came
in second at 97.2%, SmartCheck came in third at 93.2%, and SaferSC
came in fourth at 91.9%. (Moreover, recall that DLVA judges bytecode
whereas Slither and Smartcheck require source code!)

In Figures 3.10, DLVA led the pack in average analysis time per contract
(the graph is in log scale, lower better) at only 0.2 seconds, SaferSC

116

CHAPTER 3. RELATED WORK

came in second at 1.0 seconds, Slither came in third at 1.3 seconds, and
SMARTEMBED came in fourth at 2.6 seconds.

In our benchmarking, we found that DLVA, Slither, and SmartCheck had
the best overall performance: their high accuracy (99.7%, 97.2%, and
93.2%, respectively) reflects a good balance between a high TPR (98.7%,
99.4%, and 78.1%) and a low FPR (0.6%, 15.3%, and 2.4%). Generally
speaking, other tools with good TPR suffered with poor FPR, and vice
versa.

A few of these competitors deserve special attention to contextualize their
results. eThor’s focus is entirely on soundness, and indeed we were never
able to produce a false negative with it; the authors are to be commended.
However, the cost to the other metrics is severe: their 34.5% completion
rate and 79.8% false positive rate are pitiful; moreover, their analysis
time is three orders of magnitude slower than DLVA.

SAILFISH leads the pack with 0.1% FPR, but their TPR is a mediocre
72.7%, explaining their unexceptional 87.5% overall accuracy.

SaferSC’s results seem to have benefited greatly from the nature of our
test suite. Of all the vulnerabilities we test, it is only sensitive to “suicidal,”
which is why we have only 1 relevant benchmark (Elysiumbenchmark [7]); all
other tools have at least 3 relevant benchmarks. We suspect that SaferSC
is strongly biased to report a vulnerability. This naturally leads to a
fantastic true positive rate (99.8% tested), but also results in a very poor
false positive rate as well (92.2%). However, since the number of suicidal
contracts in the Elysium test set is much higher than the number of non-
suicidal contracts, SaferSC’s benchmarked accuracy of 91.9% looks better
than we think it would, if benchmarked against a test suite that had a
more realistic balance of suicidal and non-suicidal contracts. Nevertheless,
since SaferSC was one of the few available ML/DL tools, we included it
in our benchmark.

SMARTEMBED suffers from the opposite problem: due to a small
predefined bug dataset, it is strongly biased to consider contracts as safe.
This naturally leads to a fantastic false positive rate (0.4%), at the cost

117

CHAPTER 3. RELATED WORK

of a very poor true positive rate (0.2%). Accuracy (62.5%) is not as bad
as might be anticipated since most contracts in the 4 test datasets are in
fact safe for the “reentrancy” and “over/underflow” vulnerabilities. Like
SaferSC, we included SMARTEMBED primarily since it was one of the
few available ML/DL tools.

SoliAudit, the third easily available ML/DL tool, performed better than
SaferSC or SMARTEMBED on balance, despite its unexceptional overall
performance. Its middling TPR of 63.8% was in line with a number of
other tools; its FPR of 28.1% was markedly higher than almost every other
tool. Still, unlike SaferSC or SMARTEMBED, these results indicate that
SoliAudit is not very strongly biased positively or negatively. Accordingly,
we think that SoliAudit’s benchmarked accuracy of 81.9% is a fair measure
of its performance.

The tools that seem to be most widely used in the community at the
moment are Mythril (including its commercial version MythX) and Slither.
ConFuzzius is seeing increasing use in the fuzzing community.

We will discuss these experimental results in more detail in the following
DLVA Chapter §4.

– SCooLS [2]: As shown in Figure 3.11, SCooLS has an overall accuracy
98.4% and F1 score 90.4% with an associated false positive rate of only
0.8%. It enjoys the highest accuracy among the tools, the highest F1
score, and the lowest false positive rate. Moreover, the average time to
analyze a function was only 0.05 seconds, tied for first place. We discuss
Figure 3.11 in more detail in the following SCooLS Chapter §5.

(B) The importance of independent evaluation: The importance of indepen-
dent evaluation for new tools and techniques is underscored by the work of
Chakraborty et al. [30] (2021). In their study, they assessed the performance of
state-of-the-art learning-based techniques for general programming languages
in a real-world vulnerability prediction scenario using independent benchmarks.
Shockingly, their findings revealed that the tools’ performance plummeted
by over 50% when evaluated on these external datasets. This stark decrease

118

CHAPTER 3. RELATED WORK

Figure 3.11: SCooLS vs. STATE-OF-THE-ART Tools; Accuracy (the higher the
better); F1 (i.e., the harmonic mean of precision and recall; the higher the better)
False Positive Rate (FPR) (i.e., false alarm rate; the lower the better); Average
analysis time per function (the lower the better); tested on the ReentrancyBook [12]

119

CHAPTER 3. RELATED WORK

points to critical limitations in existing approaches, including data duplica-
tion, imbalanced data handling, lack of real-world training data, inadequate
semantic information learning, and poor class separability.

Chakraborty et al.’s findings offer a compelling argument for rigorous indepen-
dent benchmarking as a cornerstone for assessing the true efficacy of novel tools
and techniques. It exposes hidden weaknesses that might otherwise remain
concealed within the confines of internal evaluations, ultimately promoting
transparency and fostering the development of robust and reliable solutions.
By embracing independent validation, we can ensure that promising innova-
tions stand the test of real-world challenges and ultimately deliver tangible
benefits in practical applications.

This is precisely why, after meticulously training and internally evaluating
DLVA, we took the crucial step of assessing its performance on four independent
benchmarks unseen by the model during training. These rigorous benchmarks,
including Reentrancybenchmark [11],SolidiFIbenchmark [13], Elysiumbenchmark [7],
and MANDO-GURU [103]. These benchmarks, meticulously crafted through
manual labeling, bug injection, and peer-reviewed research, represent real-
world challenges unseen by DLVA during training. It is with great satisfaction
that we report DLVA’s high performance across all benchmarks, a testament
to its efficacy and generalizability. This outcome not only validates the robust-
ness of our approach but also underscores the invaluable role of independent
benchmarking in fostering trust and propelling the development of reliable
solutions in the evolving landscape of smart contract security.

With regards to SCooLS, we are committed to conducting similarly rigorous
independent benchmarking in the future, contingent upon the availability
of a suitable function-level benchmark dataset from the community. This
commitment aligns with our unwavering belief in the transformative power
of independent validation to advance the field and ensure the development of
truly dependable smart contract security tools.

To assess the real-world effectiveness of state-of-the-art learning-based vulner-
ability prediction techniques, we benchmarked the three readily available tools
against three benchmark datasets: Elysiumbenchmark [7], Reentrancybenchmark [11],

120

CHAPTER 3. RELATED WORK

Figure 3.12: Comparison of reported tool performance by its authors versus indepen-
dent benchmarking results tested on the Elysiumbenchmark [7], Reentrancybenchmark [11],
and SolidiFIbenchmark [13]

and SolidiFIbenchmark [13]. As shown in Figure 3.12, our own benchmarking was
more challenging than the benchmarking done by the authors: benchmarked
performance scores were lower than reported performance scores across all
tools, with declines ranging from a modest 7.7% to a substantial 34.9%. Nev-
ertheless, we applaud the authors for making their tools publicly available for
independent analysis, especially as the vast majority of ML/DL tools are not
available.

These striking results underscore the critical importance of independent bench-
marking. Only through rigorous testing on diverse and unseen datasets can we
truly gauge the effectiveness of vulnerability prediction techniques in real-world
settings. Unfortunately, the lack of open access to tools and datasets remains
a significant hurdle in this field. The prevalence of closed-source tools impedes
independent verification and limits our ability to fully assess the generaliz-
ability and practical applicability of these techniques. Our confidence in the
reported results of closed-source tools is low. We urge researchers in this field
to embrace open-source practices and prioritize transparency to foster trust

121

CHAPTER 3. RELATED WORK

and accelerate the development of robust smart contract security solutions.

3.7 Ethical Disclosure
Blockchain vulnerability disclosure presents a unique dilemma: attackers actively

hunt for weaknesses, while anonymity makes it difficult to alert participants to
potential threats [20]. To address this challenge, we prioritized responsible disclosure,
aligned with USENIX’s Research Ethics Committee feedback. We focused on
mitigating real-world impacts before releasing our vulnerability analysis tools, DLVA
and SCooLS.

While temporarily closed for safety enhancements, both tools are now re-opened,
empowering the community to contribute to a more secure blockchain ecosystem.
This responsible approach ensures vulnerabilities are addressed before malicious
actors can exploit them, building trust and strengthening the overall blockchain
landscape.

3.8 Threats to Validity
• Internal Validity:

Our bytecode analysis tools are fast and efficient, but they come with two
potential blind spots:

– Blind Spot 1: Maliciously-created Contracts: We only analyze publicly
available bytecode, which mostly comes from good-faith developers. This
misses a smaller but crucial group: contracts with intentional flaws
designed for malicious purposes. We can’t effectively detect these yet
because our training data lacks enough positive examples. This means our
findings might miss a portion of the actual security threats on Ethereum.
We’re working on gathering more data and improving our tools to identify
these bad actors in the future.

– Blind Spot 2: Source Code Vulnerabilities: Some vulnerabilities stem from
source code flaws that don’t directly translate to the bytecode level. We
compared our detection accuracy with source code analysis tools to assess

122

CHAPTER 3. RELATED WORK

this impact. While our bytecode approach generally performed better,
for specific vulnerabilities like “uninitialized-local,” which are easier to
identify in source code, our detection rate fell below average. This
highlights the complementary strengths of both approaches, emphasizing
the need for a comprehensive analysis strategy that combines both source
code and bytecode insights for optimal vulnerability detection.

• External Validity:

Addressing external validity challenges is essential for building robust and
trustworthy learning-based smart contract vulnerability detection tools. Ensur-
ing the real-world effectiveness of learning-based smart contract vulnerability
detection tools is crucial for building trust and widespread adoption. This
involves addressing two key challenges:

– Explainability and Interpretability: Firstly, understanding why these
models flag certain contracts as vulnerable can be difficult, which can
impede trust and adoption. To partially address this, we have built
SCooLS’s auto-exploit generator, which proves the identified vulnerabili-
ties are indeed exploitable by external attackers. This adds a tangible
layer of validation to the model’s predictions. Secondly, we need to
ensure that the vulnerabilities detected by the model are relevant and
exploitable in real-world scenarios. While the auto-exploit generator
tackles this to some extent, future work will involve developing techniques
to explain the model’s reasoning, providing insights into the importance
of different features, and empowering developers to validate the findings
themselves. These steps will further solidify the trustworthiness and
real-world applicability of our vulnerability detection tools.

– Evolving Vulnerabilities and Attack Patterns: As new vulnerabilities
emerge, models require continuous retraining to maintain effectiveness.
DLVA and SCooLS have been designed with adaptability in mind, allow-
ing for continuous model updates and retraining. It leverages domain
knowledge for adaptive threat modeling, but this process does require

123

CHAPTER 3. RELATED WORK

some positive training samples to initiate supervised or semi-supervised
model retraining.

– Robustness Against Adversarial Attacks: Malicious actors could attempt
to manipulate smart contracts or data fed to the model to evade detection.
This could involve crafting subtle changes to the contract code, poisoning
the training data with false positives or negatives, or exploiting specific
vulnerabilities in the model architecture. Future work will explore more
advanced techniques like adversarial training and resilient model archi-
tectures to further harden our tools’ defenses. This involves deliberately
exposing the model to adversarial examples during training, allowing it
to learn to identify and resist such attacks. Additionally, research into
more robust model architectures, such as those with built-in redundancy
or fault tolerance, could further improve defense capabilities.

124

CHAPTER 4. SUPERVISED DEEP LEARNING: DLVA

Chapter 4

Supervised Deep Learning: DLVA

In this chapter, we focus on detecting of potential security vulnerabilities in
smart contracts using a supervised deep learning methodology. Specifically, our
focus is on leveraging advanced computational techniques to accurately detect and
classify these vulnerabilities in a systematic and efficient manner.

Smart contracts represent a highly promising and attractive concept within
the realm of Ethereum blockchain technology, as they offer several key advantages,
including immutability, transparency, and decentralization. These features make
Ethereum smart contracts an appealing option for a wide range of applications.
However, the adoption of smart contracts also poses unique challenges, particularly
in regards to security. Given the potential financial and reputational risks associated
with smart contract vulnerabilities, vulnerability analyzers are needed to proactively
identify and mitigate potential security threats before they result in significant losses.

We introduce Deep Learning Vulnerability Analyzer (DLVA) [3, 4, 5], a vulnera-
bility detection tool for Ethereum smart contracts based on powerful deep learning
techniques adapted for smart contract bytecode. We train DLVA to judge bytecode
even though the supervising oracle, Slither, can only judge source code. DLVA’s
training algorithm is general: we “extend” a source code analysis to bytecode with-
out any manual feature engineering, predefined patterns, or expert rules. DLVA’s
training algorithm is also robust: it overcame a 1.25% error rate mislabeled contracts,
and—the student surpassing the teacher—found vulnerable contracts that Slither
mislabeled. In addition to extending a source code analyzer to bytecode, DLVA is
much faster than conventional tools for smart contract vulnerability detection based
on formal methods: DLVA checks contracts for 29 vulnerabilities in 0.2 seconds, a

125

CHAPTER 4. SUPERVISED DEEP LEARNING: DLVA

speedup of 5-1,000x+ compared to traditional tools that do not scale nearly as well
as program complexity and length grows.

DLVA has three key components. First, Smart Contract to Vector (SC2V) uses
neural networks to map arbitrary smart contract bytecode to an high-dimensional
floating-point vector. We benchmark SC2V against 4 state-of-the-art graph neural
networks and show that it improves model differentiation by an average of 2.2%.
Second, Sibling Detector (SD) classifies contracts when a target contract’s vector is
Euclidian-close to a labeled contract’s vector in a training set; although only able
to judge 55.7% of the contracts in our test set, it has an average Slither-predictive
accuracy of 97.4% with a false positive rate of only 0.1%. Third, Core Classifier
(CC) uses neural networks to infer vulnerable contracts regardless of vector distance.
We benchmark DLVA’s CC with 10 “off-the-shelf” machine learning techniques and
show that the CC improves average accuracy by 11.3%. Overall, DLVA predicts
Slither’s labels with an overall accuracy of 92.7% and associated false positive rate
of 7.2%.

Lastly, we benchmark DLVA against eleven well-known smart contract analysis
tools. Despite using much less analysis time, DLVA completed every query, leading
the pack with an average accuracy of 99.7%, pleasingly balancing high true positive
rates with low false positive rates.

4.1 Introduction
The transparency of the smart contract bytecode, which is publicly accessible,

allows potential attackers to thoroughly analyze the code for vulnerabilities [93].
This poses a significant risk, especially considering that some smart contracts manage
digital assets with a substantial combined value in the hundreds of millions of US
dollars. As a result, the motivation for attackers to exploit vulnerabilities in these
contracts is exceedingly high, with potentially severe consequences for the affected
parties.

We developed the Deep Learning Vulnerability Analyzer (DLVA) to help devel-
opers and users of Ethereum smart contracts detect security vulnerabilities. DLVA
uses deep learning (neural networks) to analyze smart contracts. DLVA has no
built-in expert rules or heuristics, learning which contracts are vulnerable during an

126

CHAPTER 4. SUPERVISED DEEP LEARNING: DLVA

initial training phase.
We focus on Ethereum blockchain since it has the largest developer and user

bases: about 6,000 active monthly developers (5x growth in monthly active Ethereum
developers, from 1,084 during 2018 to 5,819 during 2022. 800+ new Ethereum de-
velopers per month since February 2021) [27]. Ethereum distributed applications
(dApps) target domains including financial services, entertainment, and decentral-
ized organizations. Ethereum smart contracts are usually written in high-level
programming languages such as Solidity, before being compiled to Ethereum Virtual
Machine (EVM) bytecode and deployed on the blockchain [145]. Ethereum smart
contracts pair (1) a set of functions with (2) dedicated state stored in the blockchain.
In turn, functions are sequences of EVM instructions that define how the smart
contract behaves. Once deployed on the blockchain, the code of a smart contract is
immutable and publicly available. Unfortunately, being computer programs, smart
contracts are prone to bugs.

Bugs occur in smart contracts for many reasons, e.g. the semantics for Ethereum
Virtual Machine (EVM) instructions is more subtle than is typically understood [118].
Poor software engineering techniques, e.g. widespread copying/pasting/modify-
ing [50, 78] lead to rapid propagation of buggy code.

Since smart contract bytecode—and for about a third of the contracts, source
code—is public, attackers can analyze a smart contract’s code for vulnerabilities [93,
163]. With some contracts controlling digital assets valued in the hundreds of millions
of US dollars, the motivation to attack is significant. Smart contract bugs have
caused major financial losses, with various bugs costing tens or even hundreds of
millions of US dollars [121, 129]. Unlike with conventional financial systems, users
typically have no recourse to recover losses.

Approximately two-thirds of unique smart contracts do not have source code
available, but most previous vulnerability analyzers require (or at least meaningfully
benefit from) source code availability. DLVA works directly on bytecode. Moreover,
most previous tools require significant time to analyze contracts, especially as the
contracts get longer. DLVA checks a typical contract in 0.2 seconds, 5-1,000+ times
faster than competitors, enabling vulnerability detection at scale.

We trained DLVA using contracts labeled by the Slither [45] static analyzer.
Slither is state of the art but requires source code, and so can only label 32.6% of

127

CHAPTER 4. SUPERVISED DEEP LEARNING: DLVA

the unique contracts in our data set. Although Slither can only label source code, we
train DLVA to judge bytecode, thus “extending” a source code analyzer to bytecode.
Slither taught DLVA 29 vulnerabilities for long contracts (750+ opcodes) and 21 for
shorter contracts.

Previous bug-finding approaches for smart contracts fall into three camps: static
analyzers, fuzzing, and machine learning. Most previous work has been in the static
analyzers camp, e.g. Oyente [93], Mythril [100], Osiris [134], SmartCheck [132], and
Slither [45]. Most require source code, although a few can handle bytecode. Fuzzing
is a dynamic analysis technique that attempts to falsify user-defined predicates or
assertions. Contractfuzzer [76] and Echidna [59] are important examples.

DLVA is the first publicly available smart contract vulnerability analyzer using
deep learning (graph neural nets), but a few pioneers have tried other machine
learning techniques; unfortunately, only SaferSC [128], SMARTEMBED [50, 49, 51],
and SoliAudit [89] have an available tool, enabling benchmarking.

Figure 4.1 benchmarks DLVA against eleven competitors. DLVA is on the
far right. We use bar-and-whiskers where star ⋆ represents the mean and plus +
represents outliers. Our average Completion Rate (i.e., the percentage of contracts
for which a tool produces an answer, the higher the better) is 100.0%. Our average
accuracy is 99.7% (the higher the better), with a True Positive Rate (i.e., detection
rate; the higher the better) of 98.7% and a False Positive Rate (i.e., false alarm rate;
the lower the better) of 0.6%. Our average analysis time per contract (the graph is
in log scale, lower better) is 0.2 seconds. We discuss Figure 4.1 in more detail in
§4.3.4.

Smart learning pays off: DLVA beats Slither on every statistic except for TPR
(where it lags by 0.7%). Recall also that Slither requires source whereas DLVA needs
only bytecode.

Our main contributions are as follows:
1) §4.2.2, 4.2.3.1, 4.3.2 We develop a Smart Contract to Vector (SC2V) engine

that maps smart contract bytecode into a high-dimensional floating-point
vector space. SC2V uses a mix of neural nets trained in both unsupervised
and supervised manners. We use Slither for supervision, labeling each contract
as vulnerable or non-vulnerable for each of the 29 vulnerabilities we handle.
We provide no expert rules or other “hints” during training. We evaluate the

128

CHAPTER 4. SUPERVISED DEEP LEARNING: DLVA

Figure 4.1: DLVA vs. alternatives on the Elysiumbenchmark [7], Reentrancybenchmark [11],
and SolidiFIbenchmark [13]; star ⋆ indicates the mean; plus + indicates outliers

129

CHAPTER 4. SUPERVISED DEEP LEARNING: DLVA

SC2V engine against four state-of-the-art graph neural networks and show it
is 2.2% better than the average competitor and 1.2% better than the best.

2) §4.2.5, 4.3.3.1 Our Sibling Detector (SD) classifies contracts according to
the labels of other contracts Euclidian-nearby in the vector space. Our SD is
highly accurate, showing the quality of SC2V: on the 55.7% of contracts in
our test set that it can judge, it has an accuracy (to Slither) of 97.4% and an
associated FPR of only 0.1%.

3) §4.2.3.2, 4.3.3.1, 4.3.2 We design the Core Classifier (CC) of DLVA using
additional neural networks, trained in a supervised manner using the same
labeled dataset as SC2V. On the “harder” 44.3% of our test set, the CC has an
accuracy (to Slither) of 80.0% with an associated FPR of 21.4%. We evaluate
the CC against ten off-the-shelf machine learning methods and show that it
beats the average competitor by 11.3% and the best by 8.4%.

4) §4.2, 4.3.3.1 DLVA is the combination of SC2V, SD, and CC. This whole is
greater than its parts: DLVA judges every contract in the test set, with an
average accuracy (to Slither) of 87.7% and FPR of 12.0%.

5) §4.2.6, 4.3.3.2 Small contracts are simpler than larger ones. We tweak our
design to better handle such contracts and retrain. On small contracts, DLVA
has an average accuracy (to Slither) of 97.6% with a FPR of 2.3%.

6) §4.2, 4.3.3.3 Accordingly, DLVA’s overall accuracy (average of large and small)
is 92.7% with a FPR of 7.2%.

7) §4.3.1, 4.3.4 We propose and evaluate six datasets to benchmark DLVA and
its components. As presented in Figure 4.1, we benchmark DLVA against eight
static analyzers and three learning-based analyzers

In addition to the main contributions itemized above, the discussion of related
work in §4.4. Some supplemental material is included in the appendix: Appendix A
contains a discussion of alternative deep learning models we explored, which may be
of interest to those building related tools.

130

CHAPTER 4. SUPERVISED DEEP LEARNING: DLVA

DLVA availability and ethical considerations Any vulnerability analyzer can
be used with ill intent. Blockchains are tricky for responsible disclosure [20]. Not
only are attackers incentivized to find and attack vulnerabilities, but due to the
pseudonymous nature of the blockchain, it is impossible to quietly inform participants
of discovered vulnerabilities.

On the other hand, since DLVA requires labelled data sets to train, none of our
detected vulnerabilities are “zero-day.” Moreover, honest actors benefit from DLVA
too: everyone wants to know if the contracts they use are vulnerable.

On balance, the community benefits from access to DLVA, and so like other
smart contract vulnerability analyzers [93, 134, 100, 132, 89, 116, 45, 133, 22], we
will release DLVA.

DLVA is available for download from https://secartifacts.github.io/use

nixsec2023/appendix-files/sec23winterae-final67.pdf [5]. The instructions
contain explanation for how to analyze a single contract or a batch of contracts.
It takes 1–2 minutes to load the models into memory (≈2 seconds per model);
afterwards, each contract is judged extremely quickly (≈0.2 seconds per contract).

DLVA is easy to operate, delivers quick results, and has demonstrated high
accuracy in identifying vulnerabilities. It has user-friendly interface and efficient
performance make it highly suitable for integration into the development process
by engineers. The adoption of DLVA has the potential to significantly enhance
the security and reliability of smart contracts, mitigating the risks associated with
vulnerabilities and contributing to the advancement of blockchain technology. Further
research can be done to explore DLVA’s potential for other cybersecurity applications
beyond smart contract vulnerability classification.

4.2 Designing DLVA
Given a smart contract c (expressed in bytecode) as input to DLVA. For each

vulnerability v of the 29 vulnerabilities listed in Table 4.1, our Deep Learning
Vulnerability Analyzer’s job is to predict label cv, where cv = 1 means that c is
vulnerable to v and cv = 0 means c is secure from v.

Developing a tool that uses deep learning involves several steps. First, the overall
architecture must be designed. Second, the resulting model must be trained on a

131

https://secartifacts.github.io/usenixsec2023/appendix-files/sec23winterae-final67.pdf
https://secartifacts.github.io/usenixsec2023/appendix-files/sec23winterae-final67.pdf

CHAPTER 4. SUPERVISED DEEP LEARNING: DLVA

suitable training data set. Third, substantial testing with a disjoint validation set
is used to tune hyperparameters. These steps are the focus of §4.2. Evaluating the
model on (disjoint) testing sets is in §4.3.

Table 4.1: 29 vulnerabilities in EthereumSClarge (200+
times); ⋆ indicates 21 vulnerabilities in EthereumSCsmall

(30+ times)

Smart contract vulnerabilities Large Small
⋆ shadowing-state (SWC-119): state variables with mul-

tiple definitions at contract and function level.
3,602 52

⋆ suicidal (SWC-106): the selfdestruct instruction that
is triggered by an arbitrary account.

374 49

⋆ uninitialized-state (SWC-109): local storage variables
are not initialized properly, and can point to unexpected
storage locations in the contract.

3,260 56

H
ig

h
Se

ve
ri

ty ⋆ arbitrary-send: unprotected call to a function sending
Ether to an arbitrary address.

6,499 338

⋆ controlled-array-length: functions that allow direct
assignment of an array’s length.

5,282 61

⋆ controlled-delegatecall (SWC-112): delegatecall or
callcode instructions to external address.

1,485 37

⋆ reentrancy-eth (SWC-107): usage of the fallback func-
tion to re-execute function again, before the state vari-
able is changed (a.k.a. recursive call attack); reentrancies
without Ether not reported.

3,962 39

⋆ unchecked-transfer: the return value of an external
transfer/transferFrom call is not checked.

14,151 262

⋆ erc20-interface: incorrect return values for ERC20
functions.

9,017 161

⋆ incorrect-equality (SWC-132): improper use of strict
equality comparisons.

8,604 95

Continued on next page

132

https://swcregistry.io/docs/SWC-119
https://swcregistry.io/docs/SWC-106
https://swcregistry.io/docs/SWC-109
https://swcregistry.io/docs/SWC-112
https://swcregistry.io/docs/SWC-107
https://swcregistry.io/docs/SWC-132

CHAPTER 4. SUPERVISED DEEP LEARNING: DLVA

Table 4.1 – continued from previous page
Smart contract vulnerabilities Large Small

⋆ locked-ether: contract with a payable function, but
without withdrawal ability.

12,164 398

mapping-deletion: deleting a structure containing a
mapping will not delete the mapping, and the remaining
data may be used to breach the contract.

235 0

shadowing-abstract: state variables shadowed from
abstract contracts.

2,894 9

tautology: expressions that are tautologies or contra-
dictions.

2,441 17

write-after-write: variables that are written but never
read and written again.

467 6

M
ed

iu
m

Se
ve

ri
ty ⋆ constant-function-asm: functions declared as constan-

t/pure/view using assembly code.
4,019 49

constant-function-state: calling to a constan-
t/pure/view function that uses the staticcall opcode,
which reverts in case of state modification, and breaking
the contract execution.

210 3

⋆ divide-before-multiply: imprecise arithmetic opera-
tions order; because division might truncate.

14,529 176

⋆ reentrancy-no-eth (SWC-107): report reentrancies
that don’t involve Ether.

14,982 130

tx-origin: tx.origin-based protection for authorization
can be abused by a malicious contract if a legitimate
user interacts with the malicious contract.

347 19

⋆ unchecked-lowlevel: return value of a low-level call is
not checked.

1,419 68

⋆ unchecked-send: return value of a send is not checked,
so if the send fails, the Ether will be locked.

593 68

Continued on next page

133

https://swcregistry.io/docs/SWC-107

CHAPTER 4. SUPERVISED DEEP LEARNING: DLVA

Table 4.1 – continued from previous page
Smart contract vulnerabilities Large Small

⋆ uninitialized-local (SWC-109): uninitialized local vari-
ables; if Ether is sent to them, it will be lost.

6,843 114

⋆ unused-return (SWC-104): return value of an external
call is not stored in a local or state variable.

11,222 2,427

⋆ incorrect-modifier: modifiers that can return the de-
fault value, that can be misleading for the caller.

1,273 171

Lo
w

Se
ve

ri
ty ⋆ shadowing-builtin: shadowing built-in symbols using

variables, functions, modifiers, or events.
1,536 35

⋆ shadowing-local: shadowing using local variables. 26,259 174
variable-scope: variable usage before declaration (i.e.,
declared later or declared in another scope).

1,484 27

void-cst: calling a constructor that is not implemented. 341 3

Overview DLVA’s design is in Figure 4.2. DLVA begins with the selection of
a large training set, which is labeled for supervisory purposes as vulnerable or
non-vulnerable for each attack vector. Next, a control-flow graph is extracted
(§4.2.1).

The first neural net maps CFG Nodes to Vectors (N2V) using the Universal
Sentence Encoder (USE), trained in unsupervised mode (§4.2.2). The second and
third neural nets form the heart of DLVA. The Smart Contract to Vector (SC2V)
engine maps smart contract into vectors; the Core Classifier (CC) classifies contracts
as vulnerable or non-vulnerable by looking for 29 vulnerabilities. The design and
training of these neural nets, including choices for hyperparameters, is in §4.2.3
and §4.2.4. Lastly, the Sibling Detector (SD) applies a simple heuristic to improve
accuracy for “simple cases” (§4.2.5).

Once training has finished, analyzing a fresh contract proceeds as follows. First,
bytecode is transformed to a CFG, and N2V summarizes its nodes into vectors.
Next, SC2V uses those node summaries to summarize the entire CFG as a vector.

134

https://swcregistry.io/docs/SWC-109
https://swcregistry.io/docs/SWC-104

CHAPTER 4. SUPERVISED DEEP LEARNING: DLVA

Figure 4.2: The Deep Learning Vulnerability Analyzer (DLVA).

135

CHAPTER 4. SUPERVISED DEEP LEARNING: DLVA

This vector is given to the SD to see if it is close to a contract in the training set.
If so, DLVA is done. If not, DLVA passes the vector to the CC, which renders its
judgment. Finally, DLVA outputs a 29-dimensional binary vector corresponding to
the 29 distinct vulnerabilities. Each element in the binary vector indicates: 1 means
contract c is vulnerable, while 0 means contract c is secure from the corresponding
vulnerability.

4.2.1 Preprocessing

Data Collection We downloaded our Ethereum smart contract data set from
Google BigQuery [57]. The dataset contains 51,913,308 contracts, but many are
redundant: 99.3%, in fact. Removing redundant contracts leaves 368,438 distinct
contracts, which we dub the EthereumSC data set, summarized in the histogram in
Figure 4.3.

Data labeling Two of our neural nets require labeled datasets to train. We
chose Slither [45] (v0.8.0, committed on May 07, 2021, build 4b55839) to label
because it covers a wide variety of vulnerabilities (74!), is more accurate than
competitors for most vulnerabilities, and is relatively quick. Slither requires access
to Solidity source code (rather than bytecode). The Slither analyzer employs an
intermediate representation called SlithIR, which utilizes the static single assignment
(SSA) technique to conduct a series of predefined analyses aimed at detecting
vulnerabilities in Solidity code. These analyses assess the code’s impact levels,
categorizing them as high, medium, low, or informational. Despite its effectiveness,
Slither was only able to label 32.6% of the dataset, primarily due to the absence
of source code for the majority of contracts on Etherscan, the leading blockchain
explorer for Ethereum [43] (of the 368,438 contracts in our data set, only 120,365
(32.6%) had source available). It took 13.6 days (using 1 core/16gb) for Slither to
label them.

Quality training requires a reasonable number of positive examples, so we chose
the 29 vulnerabilities that occurred at least 200 times for DLVA. Although some of
the 29 vulnerabilities are more serious than others, it was troubling to discover that
Slither considered only 37,574 contracts (31.3%) pristine from all 29 vulnerabilities.

136

CHAPTER 4. SUPERVISED DEEP LEARNING: DLVA

Figure 4.3: EthereumSC Data Set Histogram.

The remaining 82,609 vulnerable contracts had vulnerabilities distributed as shown
in Table 4.1 (some contracts exhibit multiple vulnerabilities).

DLVA must cope with messy realities, among them that Slither is impressive,
but not foolproof. A manual inspection of 50 positive “reentrancy” vulnerabilities
provided some evidence for a false positive rate of approximately 10% [45].

Figure 4.4 visually presents the vulnerability frequencies within the EthereumSC
dataset, showing the distribution and occurrence of each vulnerability type with a
bar graph. Each bar corresponds to a specific vulnerability type, while the height of
the bars signifies the frequency or occurrence of that particular vulnerability type
within the dataset.

Control-Flow Graph extraction A Control-Flow Graph (CFG) makes a pro-
gram’s structure more apparent than a list of syntactic tokens does. We use

137

CHAPTER 4. SUPERVISED DEEP LEARNING: DLVA

Figure 4.4: Vulnerability Frequencies of EthereumSC Dataset.

138

CHAPTER 4. SUPERVISED DEEP LEARNING: DLVA

EtherSolve [37] to disassemble a smart contract [145] and generate the associated
opcode CFG. EtherSolve failed to create a CFG for 182 contracts (0.1% of the
labelled data set), leaving us with 120,183 contracts suitable for training and testing.
The average contract has 228 basic blocks, with 551 edges between them.

Dividing our dataset The deep learning techniques in DLVA work better if
trained on contracts of similar size to the contract being analyzed, so we split the
120,183 distinct contracts with labels in EthereumSC into two datasets depending on
length. The 7,017 contracts with fewer than 750 opcodes become the EthereumSCsmall

data set, whereas the 113,166 contracts with between 750 and 10,000 opcodes become
the EthereumSClarge data sets. Both data sets are public [9, 8].

As is typical, we divide each data set into three disjoint subsets. The first 60%
(in the order given by the Google BigQuery after filtering) we call the “training set,”
the next 20% is the “validation set,” and the last 20% is the “test set.”

4.2.2 Unsupervised Node Feature Extraction: N2V

Sophisticated machine learning models typically work with numerical feature
vectors rather than text. Our Node to Vector (N2V) component translates the
opcode text within each CFG node (basic block) into such a feature vector to enable
more sophisticated processing. We treat each basic block as a textual sentence of
instructions (e.g. “PUSH1 0x80 PUSH1 0x40 MSTORE CALLVALUE. . . ”). We
then use the Universal Sentence Encoder (USE) [29] to transform these sentences
into 512-dimensional vectors. We train USE by feeding it the ≈21.9 million basic
blocks in our training & validation sets. We do not provide any expert rules or
guidance.

There are two variants of USE. The Transformer Architecture (TA) [138] yields
more accurate models than Deep Averaging Networks (DAN) [74], at the cost of
increased model complexity. We found the cost of TA too high: the 20-core/96-gb
time-unlimited configuration ran out of memory, and the 12 hours available on the
24-core/180gb configuration were insufficient to finish training. DAN can be trained
in linear time and was accurate enough for our purposes. To train DAN to summarize
basic blocks took only 10.5 hours with a 12-core/16gb configuration. Figure 4.5
illustrates DAN architecture where the embeddings for word and bi-grams present

139

CHAPTER 4. SUPERVISED DEEP LEARNING: DLVA

in a sentence are averaged together then passed through 4-layer feed-forward neural
network to produce 512-dimensional sentence embedding as output, the embeddings
for word and bi-grams are learned during training.

Figure 4.5: Sentence Embeddings using Universal Sentence Encoder based on Deep
Averaging Network(DAN).

In Figure 4.6 we put USE/DAN’s summary of the smart contract from Figure 2.2.
Basic block nodes are labeled by the address of the first opcode in the block, and
the f0 . . . f511 give the corresponding 512-dimensional vector for the node.

4.2.3 Supervised Training: SC2V and CC

Our Smart Contract to Vector (SC2V) engine and Core Classifier (CC) form the
heart of DLVA. As may be apparent from Figure 4.2, they have a relatively complex
structure. Both are trained in supervised mode using the Slither-generated labels.

140

CHAPTER 4. SUPERVISED DEEP LEARNING: DLVA

Node f0 f1 ... f510 f511
--
0 -0.029561 0.022146 ... -0.036117 -0.116207
12 0.009187 0.018610 ... 0.041887 -0.101014
...
368 -0.015426 0.032837 ... -0.062078 0.015451
371 -0.030309 0.054876 ... 0.009683 -0.023788

Figure 4.6: USE-generated vector embeddings

Although they are distinct components, SC2V and CC are trained together. Key
idea: by coupling their training we increase the accuracy of our predictive models.
Rather than having one universal SC2V model and 29 vulnerability-specific CC
models, we actually have 29 SC2V/CC model pairs.

4.2.3.1 Smart Contract to Vector (SC2V)

Key idea: treating programs as a graph rather than just a sequence of textual
symbols increases the accuracy of our models. SC2V maps smart contract CFGs to
high-dimensional vectors. It takes as input the graph structure of the CFG (which
we handle with Python’s NetworkX library [63]), together with the USE-generated
512-dimensional vector embeddings for the associated basic blocks. We add self-loops
to every node to increase the feedback in the neural net.

We use a modified Graph Convolutional Network (GCN) [80] combined with the
SortPooling layer from the Deep Graph Convolutional Neural Network (DGCNN) [157]
to analyze the complex structure of CFG graphs. We used three layers of GCN
with 256, 128, and 1 neuron(s). The graph convolution aggregates a node’s infor-
mation with the information from neighboring nodes. The three layers propagate
information to neighboring nodes (up to three “hops” away, and including the node
itself due to self-loops), extracting local substructure and inferring a consistent node
ordering.

We incorporated the SortPooling layer to sort the nodes using the third graph
convolution (whose output is a single channel). After sorting the node summaries in
ascending order by this channel, SortPooling selects the highest-valued 100 nodes,
whose summaries are from the GCN layers, i.e. a 256 + 128 + 1 = 385-dimensional
vector. We feed these sets of 385-dimensional vectors into a pair of traditional Conv1D

141

CHAPTER 4. SUPERVISED DEEP LEARNING: DLVA

convolutional layers, which further transform the 385-dimensional summaries into
96-dimensional vectors using rectified linear activation functions (“ReLU”). Between
the Conv1D layers we use a MaxPool1D layer, which discards the half of the vectors
with least magnitude. After the second Conv1D layer, we use a Flatten layer to
produce the final vector representing the smart contract: contracts become 4,128-
dimensional vectors. As an example, here is part of the vector for the smart contract
from Figures 2.2 and 4.6:

[0.032677 0.027598 0.014528 0.021004 ... 0.107124 0.114875 0.121002]

4.2.3.2 Core Classifier (CC)

As shown in Figure 4.2, the last neural net is a Feed Forward Network (FFN).
The goal of the CC is to use the contract embeddings generated by SC2V to predict
the label for arbitrary contracts. The structure of the FFN is three “Dense” layers
with 1,024, 512, and 1 neuron(s) respectively. These layers use standard activation
functions to activate said neurons: the first two layers use ReLU activation functions,
whereas the final layer uses a sigmoid activation function. Between the layers we
put standard “Dropout” filters with a 0.5 cutoff.

4.2.4 Selection of hyperparameters

Machine learning hyperparameters play a crucial role in model performance.
Hyperparameters are set prior to training and affect the behavior of the learning
algorithm. In our case we considered the following hyperparameters:

1) the number of graph convolutional layers (from {2, 3, 4}) and associated
neuron sizes (from {128, 256});

2) aggregation methods (from {mean, sum, sort-top-k}), followed by {1, 2, 3}
layers of Conv1D to reduce the size of the final embedding vector;

3) the number of Dense FFN layers (from {1, 2, 3}) with associated neuron sizes
(from {256, 512, 1024}); and

4) activation functions {Hyperbolic Tangent, ReLU}.

142

CHAPTER 4. SUPERVISED DEEP LEARNING: DLVA

In total we have 3 × 2 × 3 × 3 × 3 × 3 × 2 = 972 possible hyperparameter settings.
To reach the design given in Figure 4.2, we selected constant-function-asm in
EthereumSClarge, trained all 972 possible models for that vulnerability, and selected
the hyperparameters that performed best according to the validation set (disjoint
from the training and test sets). We chose constant-function-asm because the number
of positive examples were in the middle of the pack; the vulnerability is mostly only
detected by Slither, thus minimizing the danger of biasing testing due to overfitting;
and because we believed Slither’s detector for this vulnerability was generally of
high quality, with minimal false positives/negatives.

We used the same hyperparameters to train the other 28 models. In addition
to giving us confidence that the models have not been overfitted, this implies that
our architecture is relatively generic for smart contract vulnerability detection.
With support of NUS High Performance Computing (NUS HPC)1 for research
computation, we able to run 1,112 experiments with different hyperparameters to
find best parameters for DLVA design. DLVA does not rely on any manually designed
expert rules or other human-generated hints. Accordingly, given suitable labeling
oracles, training DLVA to recognize additional vulnerabilities is straightforward (we
do this in §4.3.2 and §4.3.4).

4.2.5 Sibling Detector (SD)

Given the smart contract embeddings generated by SC2V, we create a similarity
matrix using Euclidean distance:

√∑N
i=1 (Qi − Pi)2, where Q is a (previously unseen)

contract embedding vector from the test set and P is a contract embedding vector
from the training set (with known label). The Sibling Detector labels Q with the
same label as the closest contract in the training set, as long as one exists within
distance 0.1. Otherwise, the SD reports “unknown.” SD starts with a distance of
0.0 and gradually increases it by 0.00001 until a contact is found or the maximum
allowable distance of 0.1 is reached, whichever comes first. Sometimes Q has multiple
neighbors whose distances to Q are within 0.00001. When this happens, the SD
counts votes instead; if a strict majority are vulnerable, then SD reports Q as
“vulnerable.”

1NUS HPC — https://hpcportal.nus.edu.sg/

143

CHAPTER 4. SUPERVISED DEEP LEARNING: DLVA

4.2.6 Tweaking for smaller contracts

With the overall design settled, we make a few tweaks to better handle shorter
contracts (under 750 opcodes). Since the there are many fewer distinct small
contracts than large ones, we were only able to train 21 of the 29 vulnerability
models on the EthereumSCsmall data set, despite lowering the minimum threshold to
only 30 positive occurrences; we mark those 21 vulnerabilities in Table 4.1 with a ⋆.

We tweak SC2V’s SortPooling layer2 to select the highest-valued 30 nodes (down
from 100), which induces the Flatten layer to produce a 768-dimensional vector
(down from 4,128). We use the same hyperparameters as for large contracts. The
training set has fewer contracts so we turn off the SD.

4.2.7 Final details

Engineering choices We use Python’s Keras framework to train our models.
We train for 100 epochs (stopping early when callbacks=20). In each epoch, Keras
feeds the networks the training set and adjusts their weights using the loss function
binary_crossentropy. Keras uses the Adam optimizer with a categorical cross-entropy
loss function to train more efficiently. We set the learning_rate to 5e − 4 and the
batch_size to 512. We used BatchNormalization and Dropout layers to enhance the
model’s generalization and prevent overfitting.

Training setup and time A training machine has 96 GB of memory and a
20-core “Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz” CPU. We used “CentOS
Linux 7 (Core),” tensorflow 2.12.0 [1], tensorflow_hub 0.13.0, and Miniconda.

Since we had 972+28+21 = 1, 021 models to train, we used 10 training machines
in parallel (200 cores, 960 GB). Total wall-clock training time was approximately
four days.

2For large contracts, SortPool selects the top 100 nodes. If we did this for small contracts we
would have to insert many dummy nodes, leading to significant artificial similarity. Accordingly,
for small contracts SortPool selects 30 nodes.

144

CHAPTER 4. SUPERVISED DEEP LEARNING: DLVA

4.3 Experiments and Evaluation
We evaluate the quality of DLVA from several complementary perspectives. In

§4.3.1 we find and build benchmarks to help us understand DLVA’s performance
from a number of complementary perspectives. In §4.3.2 we analyze the performance
of our neural nets vs. various ML alternatives, comparing our SC2V engine with
four GNNs and our Core Classifier with ten machine learning alternatives. In §4.3.3
we measure how well DLVA can predict our oracle Slither. In §4.3.4 we compare
DLVA with eleven competitors. Lastly, in §4.3.5 we draw some conclusions from our
experiments.

Testing setup Our test machine is a desktop with a 12-core 3.2 GHz Intel(R)
Core(TM) i7-8700 and 16 GB of memory.

Evaluative metrics The learning-based classification results are divided into true
positives (TP), true negatives (TN), false positives (FP), and false negatives (FN).
Derivative metrics include accuracy; true positive rate (TPR), also known as recall,
sensitivity, probability of detection, & hit rate; false positive rate (FPR), also known
as probability of false alarms, & fall-out.

Although “accuracy” is important, it is not sufficient. Our data set is imbalanced:
vulnerable smart contracts are scarce. Accordingly, a bogus model that simply labels
all contracts as non-vulnerable will be surprisingly “accurate.” Accordingly we focus
on TPR, which measures how often we catch vulnerable contracts; and FPR, which
measures how often we issue false alarms. We formally define these metrics in §2.6.

4.3.1 Designing benchmark datasets

It is challenging to pin down “ground truth” for tools that operate over large data
sets. Most human-curated benchmarks contain fewer than 100 examples, and many
of those are unrealistic, e.g. stripped to minimum size for pedagogical purposes.
This is not how vulnerabilities occur in the real world.

Machine-curated benchmarks, such as EthereumSClarge and EthereumSCsmall that
we defined in §4.2.1, can contain large numbers of realistic contracts. However, it is
hard to be totally confident about their labels. Tools capable of processing contracts

145

CHAPTER 4. SUPERVISED DEEP LEARNING: DLVA

Table 4.2: Datasets used for benchmarking DLVA

Dataset Contracts Vul Sz Ground Truth
EthereumSClarge [8] 22,634 29 L Slither
EthereumSCsmall [9] 1,381 21 S Slither
Elysiumbenchmark [7] 900 (57) 2 S Peer-reviewed
Reentrancybenchmark [11] 473 (472) 1 S GP: Manual-labelled,

GN: 2 static analyzers
SolidiFIbenchmark [13] 444 4 L GP: Bug injection,

GN: 5 static analyzers
Zeus/eThorbenchmark [10] 583 1 S/L Peer-reviewed

at scale suffer from weaknesses that include: unsoundness, incompleteness, bugs,
timeouts, and/or considering important classes of contracts to be out-of-scope.

The simple truth is that there are no existing benchmarks for Ethereum smart
contract analysis tools that label large numbers of realistic contracts in a truly
reliable way. We considered six benchmarks, summarized in Table 4.2, to help us
evaluate DLVA from a variety of perspectives. “Contracts” indicates the number of
contracts in test sets. Two benchmarks include contracts for which source code is
unavailable; in this case the (parenthetical) gives the number that do have source code
available. To help source code-based analyzers, in some cases we “lightly cleaned”
the source code (e.g., removing unicode from comments, moderately upgrading
Solidity versions). “Vul” indicates the number of vulnerabilities; “Sz” whether the
contracts are (mostly) Large (750–10,000 opcodes) or Small (less than 750); and
the source of ground truth. All six datasets are disjoint from DLVA’s training sets
and are publicly available [8, 9, 13, 7, 11, 10]. We discussed EthereumSClarge and
EthereumSCsmall in §4.2.1; they are used in §4.3.2 and §4.3.3 to tell how closely
DLVA corresponds to Slither. Three others are used to evaluate DLVA’s behaviour
directly in §4.3.4.

Elysiumbenchmark [48] This human-curated data set is labelled by Torres et al..
Elysiumbenchmark combines the SmartBugs [46] and Horus [47] data sets for “Re-
entrancy” (reentrancy-eth, 75 positive examples, 825 negative) and “Parity bug”
(suicidal, 823 positive examples, 77 negative). Elysiumbenchmark contains many
contracts that have been exploited in the real world. However, only 57 have available
source (most suicided contracts are no longer available). We cleaned 2 contract

146

CHAPTER 4. SUPERVISED DEEP LEARNING: DLVA

sources. Most contracts are under 750 opcodes, a few 750-900.

Reentrancybenchmark We sourced 53 contracts that exhibit the “Re-entrancy” (e.g.
reentrancy-eth) vulnerability from the academic literature [76, 78, 112], reported
attacks on GitHub, and various Ethereum blogs. We took well-reported vulnerabili-
ties as positive ground truth. Almost all (52) had source code on Etherscan, and
when so we manually confirmed the vulnerability. We cleaned 19 contract sources.
We considered the 420 contracts that both Slither and Mythril labelled as safe from
the 1,381 contracts in our EthereumSCsmall test set to be negative ground truth. All
contracts are under 750 opcodes.

SolidiFIbenchmark To benchmark larger contracts, we used SolidiFI [54], a system-
atic method for bug injection that has been used in previous work to evaluate smart
contract analysis tools [70, 156, 150, 103] to build the SolidiFIbenchmark.

Negative ground truth is established by the intersection of five static analyzers
(Oyente, Mythril, Osiris, Smartcheck, and Slither). Positive ground truth is by
injecting bugs from four different categories: Reentrancy (specifically, reentrancy-
eth), Timestamp-Dependency, Overflow-Underflow, and tx.origin.

SolidiFI is used to inject security bugs into Solidity smart contracts. In [54]
SolidiFI is employed to evaluate all ten analysis tools for Ethereum contracts,
focusing on false negatives and false positives. SolidiFI, the tool, formulates distinct
code snippets representative of exploitable vulnerabilities corresponding to each bug
type. The benchmark is constructed as follows:

(a) We select five static analyzers: Oyente 0.2.7, Mythril 0.21.20, Osiris 0.0.1,
Smartcheck 2.0, and Slither 0.8.0. The analyzers flag various vulnerabilities,
but four are largely in common[54]: Re-entrancy, Timestamp-Dependency,
Overflow-Underflow, and tx.origin.

(b) Out of our test set of 22,634 contracts in EthereumSClarge, we isolate the 553
contracts that are all considered safe for all four vulnerabilities, by all static
analyzers that can detect them. We consider these 553 contracts to be the
“negative ground truth.”

147

CHAPTER 4. SUPERVISED DEEP LEARNING: DLVA

(c) For each of these four vulnerabilities, SolidiFI has 40-45 code snippets exhibiting
said vulnerability. By default, SolidiFI injects many vulnerabilities into target
contracts. This makes the vulnerability detector’s task too easy. To make the
task more challenging, we modified SolidiFI to inject only a single randomly-
chosen vulnerability into a given contract. Starting from a negative contract,
we thus reach a “positive ground truth.”

(d) For each vulnerability, we inject into each safe contract in a single randomly-
chosen place of source code, yielding 553 × 4 = 2, 212 vulnerable contracts
with unique bytecode for each contract after compilation. By the nature of the
SolidiFI injection, none of these contracts have been seen before by any of the
tools. Moreover, for a given vulnerability X, there will be 553 X-vulnerable
contracts and 1,659 contracts that do not have X.

(e) We divide the contracts into three buckets: 60% for training, 20% for validation,
and 20% for testing.

(f) This yields 111 contracts in the test set for each vulnerability (444 in total),
with another 444 contracts in the validation set, and 1,324 in the training set.

We generated 2,212 contracts, of which 80% were reserved for training/validation,
with 20%—i.e., 444 in total—available for testing, with each vulnerability occurring
exactly 111 times. All contracts have source available, all of which we cleaned. All
are over 750 opcodes. The contracts are complex but the injected vulnerabilities
are simple; accordingly, performance may be better than for real-world vulnerable
contracts.

Zeus/eThorbenchmark [78, 116] A reentrancy benchmark used to evaluate
Zeus [78] and eThor [116]. Zeus’s ground truth labels differ substantially from
eThor’s, making results hard to interpret and reinforcing the slippery nature of
ground truth. Contract sizes are a mix of small and large; the subset we used have
source. We discuss this dataset in the Appendix of [4].

148

CHAPTER 4. SUPERVISED DEEP LEARNING: DLVA

4.3.2 DLVA’s neural nets vs. alternatives

Node to Vector (N2V) Appendix §A discusses other models/techniques we
considered for N2V before settling on the Universal Sentence Encoder [29], including
fastText [21], word2vec [97], Recurrent Neural Networks (RNNs) such as Long
Short-Term Memory Networks (LSTMs) [68, 52], and Bidirectional Long Short-Term
Memory (BiLSTMs) [117].

Smart Contract to Vector (SC2V) To evaluate SC2V we used SolidiFIbenchmark,
since we consider its labels to be more reliable than EthereumSClarge. We used
SolidiFIbenchmark’s training set for five state-of-the-art networks: a Graph Convolu-
tional Network (GCN) [80], a Gated Graph Sequence Neural Network (GGC) [86],
a Graph Isomorphism Network (GIN) [149], a Deep Graph Convolutional Neural
Network (DGCNN) [157], and of course our own SC2V. For consistency, we trained
all five competitors with DLVA’s CC.

The results of our experiment are in Figure 4.7. We use the AUC “area under
the receiver operating characteristic curve” metric, which measures the ability of
the model to differentiate vulnerable from non-vulnerable cases, with higher scores
better; AUC was explained in §2.6. SC2V has the highest score on Reentrancy and
Overflow-Underflow, and ties with GCN for tx.origin; on Timestamp-Dependency,
SC2V is a hair weaker than GCN. Averaged over all four vulnerabilities, SC2V leads
with 99.0%, followed by GIN at 97.8%, GCN and GGC both at 97.5%, and finally
DGCNN at 94.5%. Thus, SC2V beats the best competitor by 1.2% and the average
competitor by 2.2%. SC2V wins outright for Reentrancy and Overflow/Underflow;
ties for tx.origin; and comes in second for Timestamp-Dependency. SC2V performs
better than competing models due to its more complex design: the convolutional
layers of GCN and the SortPooling layer of DGCNN, followed by a pair of traditional
convolutional layers.

The point of SC2V is to Euclidian-cluster smart contracts that share a specific
vulnerability distinctly from contracts that are safe from that vulnerability. The
underlying vectors for large contracts have 4,128 dimensions. We use SMOTEENN
(combining over- and under-sampling using SMOTE and Edited Nearest Neighbours)
to balance positive and negative examples. Afterward, we employ t-Distributed

149

CHAPTER 4. SUPERVISED DEEP LEARNING: DLVA

Figure 4.7: Evaluating SC2V vs. state-of-the-art GNNs
150

CHAPTER 4. SUPERVISED DEEP LEARNING: DLVA

Figure 4.8: t-SNE-Embeddings for the “unchecked-lowlevel” Vulnerability.

Stochastic Neighbor Embedding (t-SNE) to compress into two dimensions for visual-
ization purposes. Figure 4.8 does just this for the “unchecked-lowlevel” vulnerability,
with Slither-labeled vulnerable contracts in red and safe contracts in blue. Even
given this compression, the clustering effect is apparent.

Core Classifier (CC) In Figure 4.9 we benchmark CC against ten (well-trained)
commonly used machine learning algorithms and one voting “meta-competitor.” We
trained all competitors on the EthereumSClarge training/validation sets and tested
using the associated test set (cf. §4.2.1). We graph accuracy (higher is better), the
True Positive Rate (higher is better); and the False Positive Rate (lower is better).

The ten established competitors have average accuracy of 68.7% (MLP’s 71.1%
is the highest). The voting meta-competitor reaches 71.6%. The CC’s average
accuracy of 80.0% crushes the competition by 11.3% and 8.4%.

In fact, DLVA’s CC is more accurate than every other model, for every test.Moreover,
the CC usually enjoys the highest/best TPR (or close), and the lowest/best FPR
(or close). On a few tests the CC’s TPR is uninspiring: uninitialized-state and
write-after-write are the most challenging. Fortunately, on those difficult vulnera-
bilities, the CC’s excellent FPR comes to the rescue. Conversely, the CC’s FPR is

151

CHAPTER 4. SUPERVISED DEEP LEARNING: DLVA

uninspiring for constant-function-state; happily, it leads the pack on TPR.
The voting meta-competitor also performs well: well above average accuracy, for

every test. But DLVA’s CC is better: it reduces the size of the error set—the set of
contracts for which a given classifier goofs—by an average of 36%.

We put Table 4.3, which examines the competition from a “post-hoc” viewpoint.
That is, while the meta-competitor does not know which of the 10 machine learning
models will be the most accurate for a given vulnerability, in Table 4.3 we get to
bet on the winners after the race has been run! Despite this advantage, DLVA’s CC
reduces the average size of the error set by 30%.

DLVA-CC achieved an average accuracy of 80.0%, surpassing the average com-
petitors accuracy of 68.94%. This indicates that DLVA’s CC effectively reduces
the average size of the error set by approximately 36% ≈ (1 − 100 - 80.0

100 - 68.94) ∗ 100. In
addition, DLVA-CC even outperforms the highest competitor’s accuracy of 71.6%.
This indicates that DLVA’s CC effectively reduces the typical size of the error set
by approximately 30% ≈ (1 − 100 - 80.0

100 - 71.6) ∗ 100.

Table 4.3: Best of the ten commonly used machine learning supervised binary
classifiers results
Vulnerability Classifier Test

size
TP FP TN FN Accuracy TPR TNR FPR FNR AUC

shadowing-state MLP 10037 290 1525 8038 184 72.6% 61.2% 84.1% 15.9% 38.8% 78.6%
suicidal SVM 10037 58 3487 6482 10 75.2% 85.3% 65.0% 35.0% 14.7% 78.3%
uninitialized-state MLP 10037 198 3851 5854 134 60.0% 59.6% 60.3% 39.7% 40.4% 62.9%
arbitrary-send MLP 10037 653 2394 6755 235 73.7% 73.5% 73.8% 26.2% 26.5% 80.4%
controlled-array-length XGB 10037 526 2688 6653 170 73.4% 75.6% 71.2% 28.8% 24.4% 80.1%
controlled-delegatecall SVM 10037 54 3059 6909 15 73.8% 78.3% 69.3% 30.7% 21.7% 76.1%
reentrancy-eth MLP 10037 377 2701 6842 117 74.0% 76.3% 71.7% 28.3% 23.7% 81.1%
reentrancy-no-eth ET 10037 1373 2438 5812 414 73.6% 76.8% 70.4% 29.6% 23.2% 79.6%
unchecked-transfer SVM 10037 1428 2672 5647 290 75.5% 83.1% 67.9% 32.1% 16.9% 81.2%
erc20-interface MLP 10037 522 3138 6157 220 68.3% 70.4% 66.2% 33.8% 29.6% 73.5%
incorrect-equality SVM 10037 932 3161 5614 330 68.9% 73.9% 64.0% 36.0% 26.1% 73.6%
locked-ether ET 10037 513 3881 5445 198 65.3% 72.2% 58.4% 41.6% 27.8% 69.3%
mapping-deletion ET 10037 22 1954 8052 9 75.7% 71.0% 80.5% 19.5% 29.0% 79.5%
shadowing-abstract XGB 10037 192 1997 7776 72 76.1% 72.7% 79.6% 20.4% 27.3% 82.6%
tautology MLP 10037 223 3098 6620 96 69.0% 69.9% 68.1% 31.9% 30.1% 74.6%
write-after-write KNN 10037 62 4004 5949 22 66.8% 73.8% 59.8% 40.2% 26.2% 67.5%
constant-function-asm MLP 10037 423 2826 6723 65 78.5% 86.7% 70.4% 29.6% 13.3% 84.5%
constant-function-state AB 10037 24 1906 8100 7 79.2% 77.4% 81.0% 19.0% 22.6% 84.2%
divide-before-multiply SVM 10037 1361 2909 5268 499 68.8% 73.2% 64.4% 35.6% 26.8% 73.0%
tx-origin MLP 10037 37 3487 6506 7 74.6% 84.1% 65.1% 34.9% 15.9% 77.3%
unchecked-lowlevel LR 10037 53 2498 7469 17 75.3% 75.7% 74.9% 25.1% 24.3% 80.3%
unchecked-send XGB 10037 69 3602 6356 10 75.6% 87.3% 63.8% 36.2% 12.7% 79.5%
uninitialized-local SVM 10037 734 4161 4894 248 64.4% 74.7% 54.0% 46.0% 25.3% 68.1%
unused-return XGB 10037 1378 2884 5494 281 74.3% 83.1% 65.6% 34.4% 16.9% 80.1%
incorrect-modifier MLP 10037 104 3353 6533 47 67.5% 68.9% 66.1% 33.9% 31.1% 71.9%
shadowing-builtin MLP 10037 115 2706 7172 44 72.5% 72.3% 72.6% 27.4% 27.7% 77.6%
shadowing-local MLP 10037 1534 3025 4624 854 62.3% 64.2% 60.5% 39.5% 35.8% 68.1%
variable-scope MLP 10037 194 3413 6382 48 72.7% 80.2% 65.2% 34.8% 19.8% 79.0%
void-cst AB 10037 35 3747 6243 12 68.5% 74.5% 62.5% 37.5% 25.5% 73.2%

152

CHAPTER 4. SUPERVISED DEEP LEARNING: DLVA

Fi
gu

re
4.

9:
D

LV
A

-C
C

vs
.

te
n

“o
ff-

th
e-

sh
el

f”
M

L
cl

as
sifi

er
s

an
d

a
m

aj
or

ity
vo

tin
g

st
ra

te
gy

(⋆
is

th
e

av
er

ag
e;

+
ar

e
ou

tli
er

s)

153

CHAPTER 4. SUPERVISED DEEP LEARNING: DLVA

4.3.3 Evaluating DLVA’s models against Slither

Slither requires source code, whereas DLVA needs only bytecode. Only 32.6% of
distinct contracts have source code available (§4.2.1); if DLVA accurately predicts
Slither on those contracts, then it is probably accurately predicting how Slither
would label the remaining 67.4%, where source code is unavailable.

Recall from §4.2.1 that we used the tool Slither to label two different datasets:
EthereumSClarge and EthereumSCsmall. We used 60% of both data sets for training,
and a further 20% for validation/tuning. The final 20% were not used in the
development of DLVA and are thus suitable for evaluation (recall that the data
sets contain distinct contracts, so no contract in the test set has been seen during
training/validation).

4.3.3.1 EthereumSClarge results

Figure 4.10 summarizes the evaluation of 29 vulnerabilities with labels in the
dataset EthereumSClarge. We measure three key statistics: on the left, accuracy
(higher is better); in the middle, the True Positive Rate (higher is better); and at
the right, the False Positive Rate (lower is better).

Each subgraph shows four distinct tasks, labeled CC-only for the Core Classifier
on the entire test set, SD-easy for the Sibling Detector on 55.7% of the test set,
CC-hard for the Core Classifier on the remaining 44.3%, and DLVA (SD+CC) for
DLVA as a whole.

Task CC-only: Core Classifier on entire dataset We first measure the Core
Classifier (CC) against the entire 22,634-contract test set. Average accuracy is
86.0%, TPR is 86.1%, and FPR is 14.1%. Table 4.4 contains the details for each
vulnerability. Our next goal is to show that we can do better by incorporating our
Sibling Detector.

Task SD-easy: Sibling Detector The Sibling Detector looks for smart contracts
in the test set that are “very close” to contracts in the training set. Our distance
threshold of 0.1 balances applicability and accuracy. At 0.1, a healthy 55.7% of the
contracts in the test are close to a training set contract. To study accuracy, we
ran the experiments reported in Table 4.5. For the 12,597 test contracts (55.7%)

154

CHAPTER 4. SUPERVISED DEEP LEARNING: DLVA

Fi
gu

re
4.

10
:

D
ee

p
Le

ar
ni

ng
Vu

ln
er

ab
ili

ty
A

na
ly

sis
To

ol
Sc

or
e

Su
m

m
ar

y
fo

r2
9

Vu
ln

er
ab

ili
tie

s
of

Et
he

re
um

SC
la

rg
e

D
at

as
et

(T
he

st
ar

sy
m

bo
l⋆

re
pr

es
en

ts
th

e
av

er
ag

e,
w

hi
le

th
e

pl
us

+
re

pr
es

en
ts

ou
tli

er
s)

155

CHAPTER 4. SUPERVISED DEEP LEARNING: DLVA

Table 4.4: DLVA Trained on EthereumSClarge (use DLVA’s core classifier only for
the entire test set)
Vulnerability Test

size
TP FP TN FN Accuracy TPR TNR FPR FNR

shadowing-state 22634 537 2715 19193 193 80.6% 73.6% 87.6% 12.4% 26.4%
suicidal 22634 77 1456 21098 7 92.6% 91.7% 93.5% 6.5% 8.3%
uninitialized-state 22634 439 4599 17402 198 74.0% 68.9% 79.1% 20.9% 31.1%
arbitrary-send 22634 1227 3715 17577 119 86.9% 91.2% 82.6% 17.4% 8.8%
controlled-array-length 22634 939 2481 19121 97 89.6% 90.6% 88.5% 11.5% 9.4%
controlled-delegatecall 22634 266 1148 21195 29 92.5% 90.2% 94.9% 5.1% 9.8%
reentrancy-eth 22634 702 3816 18021 99 85.1% 87.6% 82.5% 17.5% 12.4%
reentrancy-no-eth 22634 2509 3153 16532 444 84.5% 85.0% 84.0% 16.0% 15.0%
unchecked-transfer 22634 2577 1948 17860 253 90.6% 91.1% 90.2% 9.8% 8.9%
erc20-interface 22634 1598 1845 19047 148 91.3% 91.5% 91.2% 8.8% 8.5%
incorrect-equality 22634 1561 5489 15378 210 80.9% 88.1% 73.7% 26.3% 11.9%
locked-ether 22634 2092 2366 17722 458 85.1% 82.0% 88.2% 11.8% 18.0%
mapping-deletion 22634 33 1869 20728 8 86.1% 80.5% 91.7% 8.3% 19.5%
shadowing-abstract 22634 570 1126 20889 53 93.2% 91.5% 94.9% 5.1% 8.5%
tautology 22634 391 4701 17455 91 80.0% 81.1% 78.8% 21.2% 18.9%
write-after-write 22634 73 5309 17232 24 75.9% 75.3% 76.4% 23.6% 24.7%
constant-function-asm 22634 794 1889 19932 23 94.3% 97.2% 91.3% 8.7% 2.8%
constant-function-state 22634 33 2864 19730 11 81.2% 75.0% 87.3% 12.7% 25.0%
divide-before-multiply 22634 2468 2935 16797 438 85.0% 84.9% 85.1% 14.9% 15.1%
tx-origin 22634 55 4191 18385 7 85.1% 88.7% 81.4% 18.6% 11.3%
unchecked-lowlevel 22634 276 611 21736 15 96.1% 94.8% 97.3% 2.7% 5.2%
unchecked-send 22634 116 3718 18796 8 88.5% 93.5% 83.5% 16.5% 6.5%
uninitialized-local 22634 1162 5170 16128 178 81.2% 86.7% 75.7% 24.3% 13.3%
unused-return 22634 1947 3991 16358 342 82.7% 85.1% 80.4% 19.6% 14.9%
incorrect-modifier 22634 219 2875 19513 31 87.4% 87.6% 87.2% 12.8% 12.4%
shadowing-builtin 22634 274 1174 21149 41 90.9% 87.0% 94.7% 5.3% 13.0%
shadowing-local 22634 4595 3416 13991 636 84.1% 87.8% 80.4% 19.6% 12.2%
variable-scope 22634 250 3457 18878 53 83.5% 82.5% 84.5% 15.5% 17.5%
void-cst 22634 59 3589 18981 9 85.4% 86.8% 84.1% 15.9% 13.2%

within 0.1 distance of a training contract, SD achieved an accuracy of 97.4% with
an FPR of only 0.1%. Accuracy was never lower than 90.5% and the FPR was never
higher than 1.5%. The most challenging metric was TPR. Although average TPR
was 94.9%, variance was higher. On the 5 most challenging vulnerabilities, TPR
was 81.0%–89.5%.

Task CC-hard: Core Classifier We plan to use the CC only when the SD
reports “unknown,” i.e. the 10,037 contracts more than 0.1 away from any contract
in the training set. The CC’s job here is harder than in CC-only, the contracts are
less similar to those seen during training. Despite this restriction, the CC had an
average accuracy of 80.0% with an average FPR of 21.4% and TPR of 81.3%. The
results for individual vulnerabilities are in Table 4.6.

156

CHAPTER 4. SUPERVISED DEEP LEARNING: DLVA

Table 4.5: DLVA Trained on EthereumSClarge (Sibling Detector Results)
Vulnerability Test size

(d <= 0.1)
TP FP TN FN Accuracy TPR TNR FPR FNR Test size

(d > 0.1)
shadowing-state 12597 244 6 12335 12 97.6% 95.3% 100.0% 0.0% 4.7% 10037
suicidal 12597 14 0 12581 2 93.8% 87.5% 100.0% 0.0% 12.5% 10037
uninitialized-state 12597 273 6 12286 32 94.7% 89.5% 100.0% 0.0% 10.5% 10037
arbitrary-send 12597 444 12 12127 14 98.4% 96.9% 99.9% 0.1% 3.1% 10037
controlled-array-length 12597 316 22 12236 23 96.5% 93.2% 99.8% 0.2% 6.8% 10037
controlled-delegatecall 12597 219 2 12369 7 98.4% 96.9% 100.0% 0.0% 3.1% 10037
reentrancy-eth 12597 290 11 12279 17 97.2% 94.5% 99.9% 0.1% 5.5% 10037
reentrancy-no-eth 12597 1126 35 11396 40 98.1% 96.6% 99.7% 0.3% 3.4% 10037
unchecked-transfer 12597 1081 39 11446 31 98.4% 97.2% 99.7% 0.3% 2.8% 10037
erc20-interface 12597 1000 9 11584 4 99.8% 99.6% 99.9% 0.1% 0.4% 10037
incorrect-equality 12597 483 37 12052 25 97.4% 95.1% 99.7% 0.3% 4.9% 10037
locked-ether 12597 1810 24 10735 28 99.1% 98.5% 99.8% 0.2% 1.5% 10037
mapping-deletion 12597 10 0 12587 0 100.0% 100.0% 100.0% 0.0% 0.0% 10037
shadowing-abstract 12597 357 5 12233 2 99.7% 99.4% 100.0% 0.0% 0.6% 10037
tautology 12597 158 3 12432 4 98.8% 97.5% 100.0% 0.0% 2.5% 10037
write-after-write 12597 11 3 12581 2 92.3% 84.6% 100.0% 0.0% 15.4% 10037
constant-function-asm 12597 320 6 12263 8 98.8% 97.6% 100.0% 0.0% 2.4% 10037
constant-function-state 12597 12 0 12584 1 96.2% 92.3% 100.0% 0.0% 7.7% 10037
divide-before-multiply 12597 1008 26 11526 37 98.1% 96.5% 99.8% 0.2% 3.5% 10037
tx-origin 12597 18 0 12579 0 100.0% 100.0% 100.0% 0.0% 0.0% 10037
unchecked-lowlevel 12597 220 0 12376 1 99.8% 99.5% 100.0% 0.0% 0.5% 10037
unchecked-send 12597 42 0 12553 2 97.7% 95.5% 100.0% 0.0% 4.5% 10037
uninitialized-local 12597 343 9 12230 15 97.9% 95.8% 99.9% 0.1% 4.2% 10037
unused-return 12597 608 24 11943 22 98.2% 96.5% 99.8% 0.2% 3.5% 10037
incorrect-modifier 12597 88 9 12489 11 94.4% 88.9% 99.9% 0.1% 11.1% 10037
shadowing-builtin 12597 151 5 12436 5 98.4% 96.8% 100.0% 0.0% 3.2% 10037
shadowing-local 12597 2780 149 9607 61 98.2% 97.9% 98.5% 1.5% 2.1% 10037
variable-scope 12597 55 6 12531 5 95.8% 91.7% 100.0% 0.0% 8.3% 10037
void-cst 12597 17 2 12574 4 90.5% 81.0% 100.0% 0.0% 19.0% 10037

Task SD+CC: DLVA as a whole DLVA as a whole combines the SD and CC.
If the SD can judge a contract, it does so. If not, DLVA uses the CC to make its
best guess. DLVA has average accuracy of 87.7% with an associated FPR of only
12.0% and TPR of 87.3%. Table 4.7 reports per-vulnerability results.

Therefore, incorporating the SD into DLVA improves the statistics across the
board: DLVA’s accuracy goes up by 1.7%, its FPR goes down 2.1%, and its TPR
goes up by 1.2%.

4.3.3.2 EthereumSCsmall results

We also evaluated DLVA on 21 vulnerabilities with labels in EthereumSCsmall.
As shown in Table 4.8, for such contracts DLVA has an average accuracy of 97.6%
with a TPR of 95.4% and an associated FPR of only 2.3%.

4.3.3.3 Overall fidelity to Slither

Averaging the separately-evaluated performance on both sizes of contract, DLVA
has an overall average accuracy (to Slither) of 92.7%, a TPR of 91.4%, and a FPR

157

CHAPTER 4. SUPERVISED DEEP LEARNING: DLVA

Table 4.6: DLVA Trained on EthereumSClarge (Core Classifier Results)
Vulnerability Test

Size
TP FP TN FN Accuracy TPR TNR FPR FNR AUC

shadowing-state 10037 334 1660 7903 140 76.6% 70.5% 82.6% 17.4% 29.5% 83.0%
suicidal 10037 62 1063 8906 6 90.3% 91.2% 89.3% 10.7% 8.8% 94.6%
uninitialized-state 10037 190 2586 7119 142 65.3% 57.2% 73.4% 26.6% 42.8% 68.4%
arbitrary-send 10037 759 2449 6700 129 79.4% 85.5% 73.2% 26.8% 14.5% 86.5%
controlled-array-length 10037 589 1378 7963 107 84.9% 84.6% 85.2% 14.8% 15.4% 91.8%
controlled-delegatecall 10037 57 2085 7883 12 80.8% 82.6% 79.1% 20.9% 17.4% 88.4%
reentrancy-eth 10037 413 2366 7177 81 79.4% 83.6% 75.2% 24.8% 16.4% 86.1%
reentrancy-no-eth 10037 1430 2071 6179 357 77.5% 80.0% 74.9% 25.1% 20.0% 85.7%
unchecked-transfer 10037 1516 1361 6958 202 85.9% 88.2% 83.6% 16.4% 11.8% 91.8%
erc20-interface 10037 613 1287 8008 129 84.4% 82.6% 86.2% 13.8% 17.4% 92.3%
incorrect-equality 10037 990 2685 6090 272 73.9% 78.4% 69.4% 30.6% 21.6% 81.5%
locked-ether 10037 541 2572 6754 170 74.3% 76.1% 72.4% 27.6% 23.9% 81.4%
mapping-deletion 10037 23 1336 8670 8 80.4% 74.2% 86.6% 13.4% 25.8% 82.8%
shadowing-abstract 10037 224 917 8856 40 87.7% 84.8% 90.6% 9.4% 15.2% 94.1%
tautology 10037 238 2925 6793 81 72.3% 74.6% 69.9% 30.1% 25.4% 80.0%
write-after-write 10037 61 3388 6565 23 69.3% 72.6% 66.0% 34.0% 27.4% 75.8%
constant-function-asm 10037 448 902 8647 40 91.2% 91.8% 90.6% 9.4% 8.2% 97.1%
constant-function-state 10037 27 2711 7295 4 80.0% 87.1% 72.9% 27.1% 12.9% 87.2%
divide-before-multiply 10037 1496 1800 6377 364 79.2% 80.4% 78.0% 22.0% 19.6% 87.0%
tx-origin 10037 37 2606 7387 7 79.0% 84.1% 73.9% 26.1% 15.9% 83.7%
unchecked-lowlevel 10037 65 925 9042 5 91.8% 92.9% 90.7% 9.3% 7.1% 96.3%
unchecked-send 10037 72 2387 7571 7 83.6% 91.1% 76.0% 24.0% 8.9% 89.2%
uninitialized-local 10037 736 2700 6355 246 72.6% 74.9% 70.2% 29.8% 25.1% 79.6%
unused-return 10037 1332 2205 6173 327 77.0% 80.3% 73.7% 26.3% 19.7% 84.4%
incorrect-modifier 10037 125 1912 7974 26 81.7% 82.8% 80.7% 19.3% 17.2% 88.7%
shadowing-builtin 10037 135 1178 8700 24 86.5% 84.9% 88.1% 11.9% 15.1% 93.9%
shadowing-local 10037 1819 2052 5597 569 74.7% 76.2% 73.2% 26.8% 23.8% 81.9%
variable-scope 10037 198 2308 7487 44 79.1% 81.8% 76.4% 23.6% 18.2% 87.5%
void-cst 10037 39 2303 7687 8 80.0% 83.0% 76.9% 23.1% 17.0% 85.4%

of 7.2%.

4.3.4 DLVA vs. state-of-the-art tools

We selected the 11 competitors given in Table 4.9 to benchmark DLVA. We
selected competitors based on a number of factors. We selected tools that require
Source or those that can handle Bytecode; three competitors can handle both,
but prefer source. Most competitors use some form of Static Analysis. We also
included SaferSC [128], SMARTEMBED [50, 49, 51], and SoliAudit [89], the only
three publicly-available competitor tools using any form of Machine Learning. Two
competitor tools use Fuzzing to augment their underlying analysis. DLVA is the
first publicly available smart contract vulnerability analyzer using Deep Learning
(graph neural nets). On average the competitors recognize 18 vulnerabilities, with
significant variance. Table 4.9 also includes the year the version of the tool we used
was released and a citation count for the underlying publication as a very rough

158

CHAPTER 4. SUPERVISED DEEP LEARNING: DLVA

Table 4.7: DLVA Trained on EthereumSClarge (Results when SD and CC are working
together)
Vulnerability Test

size
TP FP TN FN Accuracy TPR TNR FPR FNR

shadowing-state 22634 578 1666 20238 152 85.9% 81.5% 90.3% 9.7% 18.5%
suicidal 22634 76 1063 21487 8 91.9% 89.6% 94.0% 6.0% 10.4%
uninitialized-state 22634 463 2592 19405 174 78.3% 71.5% 85.2% 14.8% 28.5%
arbitrary-send 22634 1203 2461 18827 143 87.8% 90.6% 85.0% 15.0% 9.4%
controlled-array-length 22634 905 1400 20199 130 90.0% 88.4% 91.7% 8.3% 11.6%
controlled-delegatecall 22634 276 2087 20252 19 88.6% 88.9% 88.4% 11.6% 11.1%
reentrancy-eth 22634 703 2377 19456 98 87.3% 88.4% 86.2% 13.8% 11.6%
reentrancy-no-eth 22634 2556 2106 17575 397 86.6% 87.4% 85.9% 14.1% 12.6%
unchecked-transfer 22634 2597 1400 18404 233 91.4% 92.2% 90.7% 9.3% 7.8%
erc20-interface 22634 1613 1296 19592 133 91.2% 90.1% 92.3% 7.7% 9.9%
incorrect-equality 22634 1473 2722 18142 297 84.3% 85.8% 82.8% 17.2% 14.2%
locked-ether 22634 2351 2596 17489 198 85.3% 86.0% 84.6% 15.4% 14.0%
mapping-deletion 22634 33 1336 21257 8 89.1% 85.6% 92.5% 7.5% 14.4%
shadowing-abstract 22634 581 922 21089 42 93.0% 91.3% 94.8% 5.2% 8.7%
tautology 22634 396 2928 19225 85 84.1% 84.8% 83.2% 16.8% 15.2%
write-after-write 22634 72 3391 19146 25 79.5% 77.9% 81.1% 18.9% 22.1%
constant-function-asm 22634 768 908 20910 48 94.6% 94.4% 94.8% 5.2% 5.6%
constant-function-state 22634 39 2711 19879 5 87.2% 89.4% 84.9% 15.1% 10.6%
divide-before-multiply 22634 2504 1826 17903 401 87.6% 87.5% 87.7% 12.3% 12.5%
tx-origin 22634 55 2606 19966 7 88.3% 91.2% 85.5% 14.5% 8.8%
unchecked-lowlevel 22634 285 925 21418 6 95.3% 95.8% 94.8% 5.2% 4.2%
unchecked-send 22634 114 2387 20124 9 89.9% 93.1% 86.6% 13.4% 6.9%
uninitialized-local 22634 1079 2709 18585 261 83.8% 84.2% 83.4% 16.6% 15.8%
unused-return 22634 1940 2229 18116 349 86.4% 87.5% 85.3% 14.7% 12.5%
incorrect-modifier 22634 213 1921 20463 37 87.3% 85.5% 89.2% 10.8% 14.5%
shadowing-builtin 22634 286 1183 21136 29 91.8% 90.2% 93.4% 6.6% 9.8%
shadowing-local 22634 4599 2201 15204 630 85.1% 85.8% 84.4% 15.6% 14.2%
variable-scope 22634 253 2314 20018 49 86.5% 86.2% 86.9% 13.1% 13.8%
void-cst 22634 56 2305 20261 12 84.7% 82.1% 87.1% 12.9% 17.9%

measure of significance.
Benchmarking against multiple tools is inherently challenging. Many tools do

not recognize the same vulnerabilities. More seriously, even for the vulnerabilities
that are recognized in common, the tools can define them differently. Consider
reentrancy, perhaps the most-studied vulnerability, and one recognized by most
of the competitors. Recall from Table 4.1 that reentrancy actually comes in two
flavours (reentrancy-eth and reentrancy-no-eth); this supported by the associated
Solidity documentation [124]. However, only Slither (and, thus, DLVA) recognizes
the -no-eth variety. If we include -no-eth examples in our benchmarks, other tools
suffer many false negatives. Accordingly, -no-eth examples are not in our test sets.

To give another example, eThor [116] provides a formal definition for their notion
of reentrancy (“single-entrancy”), and is the only competitor focused on soundness

159

CHAPTER 4. SUPERVISED DEEP LEARNING: DLVA

Table 4.8: DLVA Trained on EthereumSCsmall(use DLVA’s core classifier for the
entire test set)
Vulnerability Test

Size
TP FP TN FN Accuracy TPR TNR FPR FNR AUC

shadowing-state 1381 8 18 1355 0 98.7% 100.0% 98.7% 1.3% 0.0% 94.7%
suicidal 1381 9 143 1229 0 89.6% 100.0% 89.6% 10.4% 0.0% 89.2%
uninitialized-state 1381 10 32 1337 2 97.5% 83.3% 97.7% 2.3% 16.7% 94.0%
arbitrary-send 1381 54 16 1306 5 98.5% 91.5% 98.8% 1.2% 8.5% 94.9%
controlled-array-length 1381 8 20 1352 1 98.5% 88.9% 98.5% 1.5% 11.1% 91.4%
controlled-delegatecall 1381 5 25 1351 0 98.2% 100.0% 98.2% 1.8% 0.0% 99.6%
reentrancy-eth 1381 6 56 1319 0 95.9% 100.0% 95.9% 4.1% 0.0% 99.6%
reentrancy-no-eth 1381 18 2 1359 2 99.7% 90.0% 99.9% 0.1% 10.0% 97.6%
unchecked-transfer 1381 42 17 1318 4 98.5% 91.3% 98.7% 1.3% 8.7% 96.4%
erc20-interface 1381 22 64 1294 1 95.3% 95.7% 95.3% 4.7% 4.3% 96.9%
incorrect-equality 1381 19 26 1336 0 98.1% 100.0% 98.1% 1.9% 0.0% 92.3%
locked-ether 1381 71 37 1269 4 97.0% 94.7% 97.2% 2.8% 5.3% 95.3%
constant-function-asm 1381 5 11 1365 0 99.2% 100.0% 99.2% 0.8% 0.0% 99.7%
divide-before-multiply 1381 32 10 1336 3 99.1% 91.4% 99.3% 0.7% 8.6% 95.5%
unchecked-lowlevel 1381 11 4 1366 0 99.7% 100.0% 99.7% 0.3% 0.0% 98.5%
unchecked-send 1381 10 0 1371 0 100.0% 100.0% 100.0% 0.0% 0.0% 100.0%
uninitialized-local 1381 17 72 1290 2 94.6% 89.5% 94.7% 5.3% 10.5% 95.6%
unused-return 1381 473 3 894 11 99.0% 97.7% 99.7% 0.3% 2.3% 99.2%
incorrect-modifier 1381 36 6 1339 0 99.6% 100.0% 99.6% 0.4% 0.0% 99.9%
shadowing-builtin 1381 7 11 1363 0 99.2% 100.0% 99.2% 0.8% 0.0% 99.7%
shadowing-local 1381 27 90 1261 3 93.3% 90.0% 93.3% 6.7% 10.0% 93.7%

(i.e., a 100% detection rate) above all else. However, single-entrancy considers
unsafe some “litmus test” contracts that the SWC-107 description [101] labels safe3.
Accordingly, eThor produces a lot of false positives when compared against a ground
truth based on SWC-107. Moreover, eThor considers any contract containing a
DELEGATECALL or CALLCODE opcode to be out of scope; in practice, this eliminates a
many important examples.

Summary of results The high-level results of our competitor benchmarking was
already given in Figure 4.1. Along the bottom we put the competitors, and in
parenthesis the number of tests we include in the benchmark for that competitor
(not every tool can handle every vulnerability).

We present five measures of performance. Overall, DLVA performed extremely
well. The Completion Rate measures what percentage of contracts in our benchmarks
terminate with a yes-or-no answer (rather than, e.g., raising an exception, timing
out, running out of memory). Most suffered from the occasional timeout or etc.
Many of the source code analyzers were not able to analyze some contracts since

3For example, single-entrancy considers both the simple_dao.sol and simple_dao_fixed.sol
litmus tests to be unsafe [114], whereas the SWC-107 description considers the first to be unsafe
and the second to be safe [101].

160

CHAPTER 4. SUPERVISED DEEP LEARNING: DLVA

Table 4.9: Comparison of DLVA vs. state-of-the-art tools; Input: (S:
Source code, B:Bytecode, S/B–: Source preferred, bytecode possible); Method:
(SA/DA:Static/Dynamic Analysis, ML/DL:Machine/Deep Learning); Vul: # of
vulnerability detectors; Year: year of release of the used version; Cits: number of
citations from Google Scholar on 01/12/2023.

Analyzer Input Method Vul Year Cits
Oyente 0.2.7 [93] S/B– SA/DA 4 2017 2,219
Osiris [134] S/B– SA/DA 5 2018 287
SaferSC [128] S ML/DL 1* 2018 97
Mythril 0.21.20 [100] S/B– SA/DA 13 2019 153
SmartCheck 2.0 [132] S SA/DA 43 2019 636
SMARTEMBED [50, 49, 51] S ML/DL 10 2019 97
SoliAudit [89] S ML/DL 13 2019 98
eThor [116] B SA/DA 1 2020 107
Slither 0.8.0 [45] S SA/DA 74 2021 411
ConFuzzius [133] S SA/DA 10 2022 46
SAILFISH [22] S SA/DA 2 2022 46
DLVA [3, 4, 5] B ML/DL 29 2023 NA

the Solidity version was too old or new4. eThor refused to analyze many contracts
due to DELEGATECALL or CALLCODE opcodes. Only DLVA, SaferSC, SMARTEMBED
and SmartCheck answered every query.

Arguably the most important metrics are Accuracy, the True Positive Rate
(TPR), and the False Positive Rate (FPR) (see §2.6 for definitions). We exclude any
contract that failed to complete from these metrics (i.e., we do not double count
failures). Figure 4.1 shows the True Positive Rate (i.e., detection rate; the higher the
better), eThor had a 100.0% TPR; SaferSC followed with 99.8% TPR, Slither with
99.4% TPR, and DLVA came in fourth with 98.7% TPR. Figure 4.1 also shows the
False Positive Rate (i.e., false alarm rate; the lower the better), SAILFISH boasts
an impressive 0.1% FPR, followed by SMARTEMBED at 0.4% FPR, DLVA at 0.6%,
and SmartCheck at 2.4% FPR.

DLVA led the pack in accuracy at 99.7%, Slither came in second at 97.2%,
SmartCheck came in third at 93.2%, and SaferSC came in fourth at 91.9%. (Moreover,
recall that DLVA judges bytecode whereas Slither and Smartcheck require source

4As mentioned in §4.3.1, we made a good-faith effort to lightly clean source code to help them,
but in many cases it was not enough. We did exclude any contract for which source code was
unavailable; Completion Rates would have been far worse for source-only competitors otherwise.

161

CHAPTER 4. SUPERVISED DEEP LEARNING: DLVA

code!)
DLVA led the pack in average analysis time per contract (the graph is in log

scale, lower better) at only 0.2 seconds, SaferSC came in second at 1.0 seconds,
Slither came in third at 1.3 seconds, and SMARTEMBED came in fourth at 2.6
seconds.

Tables 4.10, 4.11, and 4.12 contain the data behind Figure 4.1. We benchmark
with Elysiumbenchmark [7], Reentrancybenchmark [11], and SolidiFIbenchmark [13] since we
have high confidence in their labelling of ground truth (§4.3.1).

Table 4.10 presents the results of the five bytecode analyzers on Elysiumbenchmark [7],
Reentrancybenchmark [11]. Elysiumbenchmark [7] contains contracts with two vulnera-
bilities: REentrancy (with 75 Genuine/ground Positives and 825 Genuine/ground
Negatives) and Parity Bug (with 823 GP and 77 GN). Reentrancybenchmark only
contains reentrancies (with 53 GP and 420 GN). For each benchmark, we document
five statistics for each tool. ‘Exp” gives the number of contracts for which analysis
failed to complete (e.g., timeouts). False Negatives gives the number of ground
positives that were incorrectly labeled as negative; conversely, False Positives gives
the number of ground negatives that were incorrectly labeled as positive. The Σum
of Failures is just Exp + FN + FP, and the Average Failure is the number of failures
as compared to the size of the test set (averaging the failure rate for RE and PB
for the two tools that can handle both). Table 4.11 gives the same data for source
code analyzers. Only 6.6% of contracts in Elysiumbenchmark have available source
(from 900 contracts to 59) since suicided PB contracts no longer have source code on
Etherscan. We considered marking the 841 missing contracts as “Exp” to emphasize
the importance analyzing bytecode, but ultimately decided to simply exclude them.
Table 4.12 gives the associated data for SolidiFIbenchmark.

Slither does not recognize Overflow/Underflow and EthereumSClarge had too few
occurrences of Timestamp-Dependency to be included in the 29 vulnerabilities in
Table 4.1. We retrained DLVA to handle these vulnerabilities with the training and
validation portions of the SolidiFI dataset.

In our benchmarking, we found that DLVA, Slither, and SmartCheck had the best
overall performance: their high accuracy (99.7%, 97.2%, and 93.2%, respectively)
reflects a good balance between a high TPR (98.7%, 99.4%, and 78.1%) and a low
FPR (0.6%, 15.3%, and 2.4%). Generally speaking, other tools with good TPR

162

CHAPTER 4. SUPERVISED DEEP LEARNING: DLVA

suffered with poor FPR, and vice versa.
A few of these competitors deserve special attention to contextualize their results.

eThor’s focus is entirely on soundness, and indeed we were never able to produce a
false negative with it; the authors are to be commended. However, the cost to the
other metrics is severe: their 34.5% completion rate and 79.8% false positive rate
are pitiful; moreover, their analysis time is three orders of magnitude slower than
DLVA.

SAILFISH leads the pack with 0.1% FPR, but their TPR is a mediocre 72.7%,
explaining their unexceptional 87.5% overall accuracy.

SaferSC’s results seem to have benefited greatly from the nature of our test suite.
Of all the vulnerabilities we test, it is only sensitive to “suicidal,” which is why
we have only 1 relevant benchmark (Elysiumbenchmark [7]); all other tools have at
least 3 relevant benchmarks. We suspect that SaferSC is strongly biased to report a
vulnerability. This naturally leads to a fantastic true positive rate (99.8% tested),
but also results in a very poor false positive rate as well (92.2%). However, since
the number of suicidal contracts in the Elysium test set is much higher than the
number of non-suicidal contracts, SaferSC’s benchmarked accuracy of 91.9% looks
better than we think it would, if benchmarked against a test suite that had a more
realistic balance of suicidal and non-suicidal contracts. Nevertheless, since SaferSC
was one of the few available ML/DL tools, we included it in our benchmark.

SMARTEMBED suffers from the opposite problem: due to a small predefined
bug dataset, it is strongly biased to consider contracts as safe. This naturally leads
to a fantastic false positive rate (0.4%), at the cost of a very poor true positive rate
(0.2%). Accuracy (62.5%) is not as bad as might be anticipated since most contracts
in the 4 test datasets are in fact safe for the “reentrancy” and “over/underflow”
vulnerabilities. Like SaferSC, we included SMARTEMBED primarily since it was
one of the few available ML/DL tools.

SoliAudit, the third easily available ML/DL tool, performed better than SaferSC
or SMARTEMBED on balance, despite its unexceptional overall performance. Its
middling TPR of 63.8% was in line with a number of other tools; its FPR of
28.1% was markedly higher than almost every other tool. Still, unlike SaferSC
or SMARTEMBED, these results indicate that SoliAudit is not very strongly bi-
ased positively or negatively. Accordingly, we think that SoliAudit’s benchmarked

163

CHAPTER 4. SUPERVISED DEEP LEARNING: DLVA

accuracy of 81.9% is a fair measure of its performance.
The tools that seem to be most widely used in the community at the moment

are Mythril (including its commercial version MythX) and Slither. ConFuzzius is
seeing increasing use in the fuzzing community.

4.3.5 Discussion

Overall we are pleased with DLVA’s performance as presented in this section:
the machine learning models in DLVA are not trivial to best; DLVA is accurately
predicting Slither’s labels; and DLVA performs well compared to competitors. What
remains is to highlight a few points and observations.

Detecting vulnerabilities that caused heavy losses Two smart contract losses
loom large in the popular understanding: the DAO hack and the Parity bug. DLVA’s
performance on Elysiumbenchmark [7] showed that for real-world contracts with these
vulnerabilities, DLVA’s accuracy was 99.4%.

70% of contracts-with-money are bytecode-only Many existing tools—including
Slither—require source code to analyze. In contrast, DLVA judges bytecode: essen-
tially, extending Slither’s “analysis style” from source- to bytecode.

We have identified approximately 12,000 contracts that hold at least 1 ETH each;
the combined value is approximately 25,700,000 ETH (1 ETH is about 1,750 USD
on June 12, 2023). Only 30% of these 12k contracts have source code available and
are thus analyzable by Slither. In contrast, DLVA can judge all of them. We suggest
that a user of a DLVA-flagged contract that lacks source code proceed with caution.

In our data set, we used DLVA to detect vulnerabilities in 248,073 contracts
that were not labelled by Slither in §4.2.1 due to unavailability of source code on
Etherscan, with total balance 540,928 ETH. DLVA flags about 6% of contracts for
at least one high severity vulnerability.

Speed matters for surveys and monitoring DLVA is much faster than other
tools. Running in “batch mode”—where all of the models are loaded into memory
and then large numbers of contracts are analyzed—DLVA judges the average contract
in 0.2 seconds. Slither takes 1.3 seconds per contract (6.5x slower), for the 32.6% of

164

CHAPTER 4. SUPERVISED DEEP LEARNING: DLVA

Ta
bl

e
4.

10
:S

m
al

lc
on

tr
ac

ts
,b

yt
ec

od
e

an
al

yz
er

s;
Ex

p:
Ex

ce
pt

io
ns

;V
ul

ne
ra

bi
lit

y:
{R

E:
R

ee
nt

ra
nc

y,
PB

:P
ar

ity
Bu

g}
;G

P:
G

ro
un

d
Po

sit
iv

es
;G

N
:G

ro
un

d
N

eg
at

iv
es

;F
N

:F
al

se
N

eg
at

iv
es

;F
P:

Fa
lse

Po
sit

iv
es

;Σ
F:

Su
m

of
Fa

ilu
re

s

B
en

ch
m

ar
k

D
at

a
Se

ts
(e

nt
ire

be
nc

hm
ar

k)
E

ly
si

um
[7

]
R

ee
nt

ra
nc

y
[1

1]
A

na
ly

ze
r

R
E

P
B

R
E

75
G

P
+

82
5

G
N

82
3

G
P

+
77

G
N

Av
er

ag
e

53
G

P
+

42
0

G
N

Av
er

ag
e

Ex
p

FN
FP

Σ
F

FN
FP

Σ
F

Fa
ilu

re
Ex

p
FN

FP
Σ

F
Fa

ilu
re

O
ye

nt
e

[9
3]

1
28

0
29

-
-

-
3.

2%
12

27
0

39
8.

2%
O

si
ri

s
[1

34
]

0
6

0
6

-
-

-
0.

7%
12

2
3

17
3.

6%
Sa

fe
rS

C
[1

28
]

0
-

-
-

2
71

73
8.

1%
-

-
-

-
-

M
yt

hr
il

[1
00

]
37

3
0

40
81

9
0

85
6

49
.8

%
39

0
3

42
8.

9%
SM

A
R

T
E

M
B

E
D

[5
0]

0
52

0
52

-
-

-
5.

7%
0

52
0

52
11

.0
%

eT
ho

r
[1

16
]

83
0

0
1

83
1

-
-

-
92

.3
%

28
7

0
13

0
41

7
88

.1
%

D
LV

A
0

1
4

5
1

3
4

0.
5%

0
3

0
3

0.
6%

165

CHAPTER 4. SUPERVISED DEEP LEARNING: DLVA

Ta
bl

e
4.

11
:

Sm
al

lc
on

tr
ac

ts
,s

ou
rc

e
co

de
an

al
yz

er
s;

Ex
p:

Ex
ce

pt
io

ns
;V

ul
ne

ra
bi

lit
y:

{R
E:

R
ee

nt
ra

nc
y,

PB
:P

ar
ity

B
ug

};
G

P:
G

ro
un

d
Po

sit
iv

es
;G

N
:G

ro
un

d
N

eg
at

iv
es

;F
N

:F
al

se
N

eg
at

iv
es

;F
P:

Fa
lse

Po
sit

iv
es

;Σ
F:

Su
m

of
Fa

ilu
re

s

B
en

ch
m

ar
k

D
at

a
Se

ts
(s

ub
se

t
of

be
nc

hm
ar

k
w

ith
av

ai
la

bl
e

so
ur

ce
co

de
)

E
ly

si
um

[7
]

R
ee

nt
ra

nc
y

[1
1]

A
na

ly
ze

r
R

E
P

B
R

E
52

G
P

+
7

G
N

7
G

P
+

52
G

N
Av

er
ag

e
52

G
P

+
42

0
G

N
Av

er
ag

e
Ex

p
FN

FP
Σ

F
FN

FP
Σ

F
Fa

ilu
re

Ex
p

FN
FP

Σ
F

Fa
ilu

re
Sm

ar
tC

he
ck

[1
32

]
0

5
1

6
-

-
-

10
.2

%
0

0
1

1
0.

2%
So

liA
ud

it
[8

9]
7

11
1

18
0

1
8

22
.0

%
88

10
5

10
3

21
.8

%
Sl

it
he

r
[4

5]
1

1
6

8
0

0
1

7.
6%

21
1

0
22

4.
7%

C
on

Fu
zz

iu
s

[1
33

]
7

7
1

15
0

0
7

18
.6

%
11

1
2

0
11

3
23

.9
%

SA
IL

F
IS

H
[2

2]
6

16
0

22
-

-
-

37
.3

%
12

5
24

1
15

0
31

.8
%

166

CHAPTER 4. SUPERVISED DEEP LEARNING: DLVA

Ta
bl

e
4.

12
:

La
rg

e
co

nt
ra

ct
s;

Ex
p:

Ex
ce

pt
io

ns
;V

ul
ne

ra
bi

lit
y:

(R
E:

R
ee

nt
ra

nc
y,

TS
:T

im
es

ta
m

p-
D

ep
en

de
nc

y,
O

U
:O

ve
r/

U
nd

er
flo

w,
T

X
:tx

.o
rig

in
);

G
P:

G
ro

un
d

Po
sit

iv
es

;G
N

:G
ro

un
d

N
eg

at
iv

es
;F

N
:F

al
se

N
eg

at
iv

es
;F

P:
Fa

lse
Po

sit
iv

es
;Σ

F:
Su

m
of

Fa
ilu

re
s

So
lid

iF
I

[1
3]

(e
nt

ire
be

nc
hm

ar
k)

A
na

ly
ze

r
R

E
T

S
O

U
T

X
11

1
G

P
+

33
3

G
N

11
1

G
P

+
33

3
G

N
11

1
G

P
+

33
3

G
N

11
1

G
P

+
33

3
G

N
Av

er
ag

e
Ex

p
FN

FP
Σ

F
FN

FP
Σ

F
FN

FP
Σ

F
FN

FP
Σ

F
Fa

ilu
re

O
ye

nt
e

[9
3]

0
0

0
0

11
0

19
12

9
12

26
7

27
9

-
-

-
30

.6
%

O
si

ri
s

[1
34

]
0

10
0

10
11

1
17

12
8

20
24

0
26

0
-

-
-

29
.9

%
M

yt
hr

il
[1

00
]

0
68

23
91

43
15

58
81

85
16

6
23

7
30

19
.4

%
Sm

ar
tC

he
ck

[1
32

]
0

0
0

0
52

0
52

83
0

83
0

0
0

7.
6%

SM
A

R
T

E
M

B
E

D
[5

0]
0

11
1

0
11

1
-

-
-

11
0

5
11

5
-

-
-

25
.5

%
So

liA
ud

it
[8

9]
0

11
1

0
11

1
1

21
22

13
28

2
29

5
0

7
7

24
.5

%
eT

ho
r

[1
16

]
19

4
0

13
5

32
9

-
-

-
-

-
-

-
-

-
74

.1
%

Sl
it

he
r

[4
5]

0
0

0
0

0
20

20
-

-
-

0
0

0
1.

5%
C

on
Fu

zz
iu

s
[1

33
]

7
54

2
63

-
-

-
64

58
12

9
-

-
-

21
.6

%
SA

IL
F

IS
H

[2
2]

0
0

0
0

-
-

-
-

-
-

-
-

-
0.

0%
D

LV
A

0
0

0
0

0
0

0
2

0
2

0
0

0
0.

1%

167

CHAPTER 4. SUPERVISED DEEP LEARNING: DLVA

the contracts it can judge.
Some tools such as Mythril or eThor can analyze bytecode like DLVA. However,

completion rates are much lower and the time required for analysis is 2-3 orders
of magnitude greater. It is not practicable to scan large numbers of contracts for
vulnerabilities with these tools, whether to survey the current state of the chain or
to monitor new contracts in real time.

Ongoing surveillance Since DLVA is fast, accurate, and handles bytecode, we
periodically run it over new contracts. When DLVA flags we “get a second opinion”
from Slither/Oyente/Mythril, depending on whether source is available.

For example, DLVA recently flagged 95 contracts for the reentrancy vulnerability.
These contracts jointly hold ≈85 ETH / 148k USD. Oyente and Slither confirmed
the vulnerability for the 17 contracts that had source available, and Oyente and
Mythril for the 78 that had only bytecode.

Stability of vulnerability detection tools A vulnerability classifier X should
give stable results: each time X runs over a contract c it should give the same answer.
DLVA has this desirable property. We relabeled EthereumSClarge with Slither and
discovered that 1,328 labels changed from “vulnerable” to “non-vulnerable,” and a
further 172 labels changed from “non-vulnerable” to “vulnerable.” Clearly Slither is
not deterministic, perhaps due to timeouts or randomised algorithms. We estimate
that Slither is mislabeling approximately 1.25% of contracts due to these issues.
Clearly, DLVA’s training algorithm is robust enough to cope with some mislabeling.

Discovering label contradictions We used the Sibling Detector to discover
pairs of very similar contracts that Slither nonetheless labels differently. SD flagged
them as potential label contradictions, reasoning that very similar contracts should
have the same classification label. For example, for the “divide-before multiply”
vulnerability, Slither labels the contract at address 0xaa3a2ae9 [35] as non-vulnerable
and the contract at address 0xa8d8feeb [36] as vulnerable.

To resolve this apparent contradiction, we first asked DLVA’s CC for its opinion
(both considered non-vulnerable), and then manually examined the Solidity source
code. Happily, DLVA’s CC is right, whereas Slither’s analysis of the contract

168

CHAPTER 4. SUPERVISED DEEP LEARNING: DLVA

at address 0xa8d8feeb is wrong. Further experiments with SD found 596 more
“contradiction pairs.” We manually reviewed 70 further pairs. For each pair reviewed,
we found that both contracts had nearly identical solidity source code, differing only
in initial values or whitespace/comments. We were pleased when the CC always
assigned the same label to both contracts in a pair. After further manual inspection,
we discovered that the CC was right 39 out of 71 times (55.0%).

This experiment indicates that machine learning techniques can help debug and
improve static analyzers.

4.4 Key Comparative Studies
The security analysis of Ethereum smart contracts is of utmost importance, and

a range of analysis tools have been developed to ensure the creation of safe and
secure smart contracts. Smart contracts pose a significant challenge as they cannot
be modified or patched once they have been published to the blockchain network.
Unlike traditional software applications, if there are changes in users’ requirements or
bugs are discovered after deployment, smart contracts cannot be updated. As smart
contracts contain significant value in crypto assets, attackers are highly motivated
to exploit vulnerabilities in them to steal funds from the contracts. However, the
community has extensively developed automated tools and methods to detect such
vulnerabilities. The security analysis methods for smart contracts can be categorized
into three types: static analyzers, fuzzing, and machine learning methods.

The community has developed a variety of static analysis and dynamic analysis
techniques to identify vulnerabilities in smart contracts. Static analyzers such as
Oyente [93], Mythril [100], Osiris [134], SmartCheck [132], Slither [45], Maian [105],
Securify [136], and Manticore [99] rely on hand-crafted expert rules and manually
engineered features.

1) The static analysis tool, OYENTE, as described in [93], is utilized for detecting
vulnerabilities in smart contracts. It utilizes symbolic execution to identify
vulnerabilities in smart contract functions based on simple patterns. The
vulnerabilities are classified into several groups, including transaction-ordering
dependent, timestamp dependence, re-entrance handling, and mishandled

169

CHAPTER 4. SUPERVISED DEEP LEARNING: DLVA

exceptions. However, it is known to produce a high false-positive rate.

Symbolic execution is the foundation of OYENTE analysis tool and is defined
in [79]. The symbolic execution technique represents smart contract variables
as expressions of symbolic values, and each symbolic path has a path condition
that is an expression over the symbolic inputs. Path conditions are built by
accumulating constraints that must be satisfied in order to follow the path.
A path is deemed infeasible if its path condition is unsatisfiable, and feasible
if it is. This approach allows the tool to statically reason about a program
path-by-path, by reasoning about one path at a time.

2) The Securify analysis tool, as discussed in [136], takes EVM bytecode and the
security properties of a smart contract as inputs. Security properties include
compliance and violation patterns. The tool utilizes the decompilation analysis
method and represents the code as Data Log facts. If a pattern is detected,
the tool infers that the code possesses the corresponding security vulnerability.

Securify’s analysis consists of two steps. First, it symbolically analyzes the
smart contract’s dependency graph to extract semantic information from the
contract code. Second, it checks compliance and violation patterns that capture
sufficient conditions to prove if a property is satisfied or not satisfied.

3) Mythril, as discussed in [100], is a static analysis tool used to detect security
vulnerabilities in smart contracts. It works by analyzing the bytecode of
the smart contract and using symbolic execution techniques to explore all
possible execution paths. Mythril performs several analyses on the contract,
including checking for vulnerabilities such as reentrancy attacks, transaction
order dependence, and integer overflows/underflows. Additionally, it can
detect issues related to uninitialized variables and access control. Mythril is
an open-source tool and is actively maintained by a team of developers. It
has been used extensively by the smart contract development community to
ensure the security of their contracts.

4) SmartCheck, as discussed in [132], is designed to identify possible vulnerabilities
in Solidity contracts by examining specific syntactic patterns in the source
code. The tool achieves this goal by converting the code into an XML syntax

170

CHAPTER 4. SUPERVISED DEEP LEARNING: DLVA

tree, which provides a structured representation of the code. SmartCheck
then employs XQuery path expressions to specify the vulnerabilities and
search for the relevant patterns within the XML tree. By using this approach,
SmartCheck is able to effectively identify potential security issues in Solidity
contracts and provide developers with the information they need to address
these risks.

5) Manticore [99] is a dynamic binary analysis tool developed by TrailOfBits
that has been adapted for use in analyzing smart contracts. It is designed to
analyze the bytecode of Ethereum smart contracts and identify vulnerabilities
that may not be apparent from simply examining the code.

Manticore works by executing the bytecode in a simulated Ethereum environ-
ment and exploring all possible execution paths. This allows it to identify
potential vulnerabilities such as reentrancy attacks, arithmetic errors, and
other types of bugs that may not be easily identified through static analy-
sis alone. One of the key features of Manticore is its support for symbolic
execution, which allows it to analyze code paths that may be difficult or impos-
sible to reach through normal execution. This allows it to identify potential
vulnerabilities that may be missed by other analysis tools.

6) Slither [45] is a static analysis tool for smart contracts that was developed
by TrailOfBits. It is designed to detect security vulnerabilities in Solidity
contracts, which is the most popular language used for writing smart contracts
on the Ethereum platform. Slither analyzes the contract code by using a
variety of techniques such as taint analysis, control flow analysis, and data flow
analysis. These techniques are used to identify potential vulnerabilities such as
reentrancy attacks, uninitialized storage pointers, and gas limit vulnerabilities.

Slither also provides a range of output formats and integrations with popular
development tools. This makes it easy for developers to integrate the tool into
their development workflow and quickly identify and fix any security issues
in their code. Overall, Slither is a powerful and flexible tool for analyzing
smart contracts and is widely used by the Ethereum development community
to ensure the security of their contracts.

171

CHAPTER 4. SUPERVISED DEEP LEARNING: DLVA

Although such tools are very impressive, and indeed we ourselves use Slither,
this reliance on expert rules can make these tools difficult to maintain and update.
We are unaware of any detection tool that detects all known vulnerabilities; or that
is easily extendable for future bugs without human developers carefully crafting
subtle expert rules and/or hardcoding additional features. Most smart contract
vulnerability analyzers use symbolic execution to reason about all execution paths
of a program. However, symbolic execution can suffer from “path explosion” when
the size and complexity of the code increases, leading to significant time and space
requirements. Practical limits on time and space can lead to difficulties analyzing
smart contracts at scale. Moreover, empirical evaluation of 9 static analysis tools [41]
classified 93% of contracts as vulnerable, thus indicating a considerable number of
false positives. In addition, only a few vulnerabilities were detected simultaneously
that got consensus from four or more tools.

Fuzzing is a dynamic analysis technique, that has the advantage of scaling well
to larger programs. Contractfuzzer [76], and Echidna [59] are two notable examples
applied to smart contracts. Rather than relying on a fixed set of pre-defined bug
oracles to detect vulnerabilities, fuzzing technique uses sophisticated grammar-based
fuzzing campaigns based on a contract ABI to falsify user-defined predicates or
Solidity assertions. However, generating meaningful inputs for fuzzing typically
requires annotating the source code of a contract.

Machine learning has developed models to handle complex program data, and
the training process has a high degree of automation. These advantages can help
overcome one of the primary limitations of tools based on formal techniques: training
a new model may not rely on the development of subtle expert rules. Of course, ML
models bring their own challenges, such as major computational requirements for
training, and the necessity of an “experimental science” approach to find a “good”
model (e.g. by tuning hyperparameters).

There is an ongoing trend of using machine learning (ML) for source and binary
analysis of security concerns [94]. Recent surveys of machine learning techniques for
source code analysis [120], malware analysis [137], and vulnerability detection [65]
explored multiple categories for utilizing machine learning in code analysis. These
categories include code representation [40], program synthesis [24], program re-
pair [39], code clone detection [144], code completion [33], code summarization [141,

172

CHAPTER 4. SUPERVISED DEEP LEARNING: DLVA

84], code review [83], code search [60, 26], and vulnerability analysis [53]. The
breadth of this work shows that machine learning highlights the potential of these
techniques for software development and security.

One of the closest pieces of related work is Momeni et al. [98], which proposed a
machine learning model to detect security vulnerabilities in smart contracts, achieving
a lower miss rate and faster processing time than the Mythril and Slither static
analyzers. Momeni et al.’s model is more handcrafted than DLVA, e.g. extracting
17 human-defined features from ASTs to measure the complexity of a small data
set of source code. DLVA uses the Universal Sentence Encoder to extract features
without human-provided hints.

Wesley et al. [128] adapted a long short-term memory (LSTM) neural network
to analyze smart contract opcodes to learn vulnerabilities sequentially, which con-
siderably improved accuracy and outperformed the symbolic analysis tool Maian.
Compared with DLVA, Wesley et al.’s model learned from opcode sequences without
considering the control flow of the smart contract, so it could not handle control-flow
vulnerabilities. DLVA’s choice to represent contracts as CFGs lets it understand
more subtle vulnerabilities.

Sun et al. [126] added an attention mechanism to (non-graph) convolutional
neural networks to analyze smart contract opcodes. They achieved a lower miss
rate and faster processing time as compared to the Oyente and Mythril static
analyzers. Liao et al. [89] developed SoliAudit, which combined machine learning
and a dynamic fuzzer to strengthen the vulnerability detection capabilities. Liao et
al. used word2vec to obtain a vector representation for each opcode and concatenated
these vectors row-by-row to form the feature matrix. They did not consider the
control-flow of the smart contract. In contrast, DLVA uses graph convolutional
neural networks to extract contract embeddings, resulting in a more sophisticated
understanding of program structure. Rather than combining with a fuzzer, we added
our sibling detector SD.

SMARTEMBED [50] introduced the idea of clone detection for bug detection in
Solidity code. SMARTEMBED used AST syntactical tokens to encode bug patterns
into numerical vectors via techniques from word embeddings. Contracts are judged
clones if they are Euclidian-close. The authors manually validated some reported
bugs and showed that SMARTEMBED significantly improved accuracy as compared

173

CHAPTER 4. SUPERVISED DEEP LEARNING: DLVA

to SmartCheck. Our Sibling Detector was inspired by SMARTEMBED, although we
work in control flow graphs rather than syntactic tokens. Moreover, SMARTEMBED
was given predefined vulnerability matricies, rather than learning from labeled data
as DLVA does.

Luca Massarelli et al. [94] investigated graph embedding networks to learn binary
functions. Massarelli et al. proposed a deep neural network called structure2vec for
graph embedding to measure the binary similarity of assembly code. In contrast,
our SC2V engine leverages unsupervised feature extraction from a CFG, which has
a much higher level of abstraction than syntactical tokens.

4.5 Summary
We have designed, trained, and benchmarked our novel Deep Learning Vulnera-

bility Analyzer (DLVA) which is an efficient, easy-to-use, and fast tool for detecting
vulnerabilities in Ethereum smart contracts. DLVA analyzes smart contract byte-
code, meaning that almost all smart contracts can be targeted. DLVA transforms
contract bytecode to an N-dimensional floating-point vector as a contract summary
using DLVA’s SC2V, and then this vector is given to DLVA’s Sibling Detector to
check whether it is close to the contracts seen before. If not, the vector is passed to
DLVA’s Core Classifier to predict the 29 vulnerabilities learned during training.

DLVA has a generic design, rather than one customized for each vulnerability.
Accordingly, given bytecodes and suitable labeling oracles, training DLVA to rec-
ognize future smart contract vulnerabilities should be straightforward without the
need for expert rules and/or hardcoding additional features.

Overall, DLVA performed extremely well, and outperformed state-of-the-art
alternatives. DLVA produced the results using about 0.2 seconds per contract, i.e.
5-1,000x faster than competitors. DLVA predicts Slither’s labels with an overall
accuracy of 92.7% and associated false positive rate of 7.2%. We benchmark DLVA
against eleven well-known smart contract analysis tools. Despite using much less
analysis time, DLVA completed every query, leading the pack with an average
accuracy of 99.7%, pleasingly balancing high true positive rates with low false
positive rates.

We wish to explore several directions in the future. We hope to improve the

174

CHAPTER 4. SUPERVISED DEEP LEARNING: DLVA

N2V module using the transformer architecture. We plan to experiment with using
multiple oracles to label the same data set to increase the accuracy of our models. We
plan to experiment with our sibling detector to understand why some vulnerabilities
are hard to catch this way.

4.6 Availability
DLVA is available for download from https://secartifacts.github.io/use

nixsec2023/appendix-files/sec23winterae-final67.pdf [5]. The data sets we
use in this research are available as well [8, 9, 13, 7, 11].

175

https://secartifacts.github.io/usenixsec2023/appendix-files/sec23winterae-final67.pdf
https://secartifacts.github.io/usenixsec2023/appendix-files/sec23winterae-final67.pdf

CHAPTER 5. SEMI-SUPERVISED LEARNING: SCOOLS

Chapter 5

Semi-Supervised Learning: SCooLS

In this chapter, we will discuss a critical challenge in detecting vulnerabilities
using deep learning models, namely the lack of large, labeled datasets suitable for
model training. We will demonstrate how this limitation poses a significant obstacle
to the effective identification of vulnerabilities in smart contracts. To address
this challenge, we propose leveraging the principles of semi-supervised learning,
which can generate more accurate models than unsupervised learning, while not
requiring the extensive, oracle-labeled training sets required by supervised learning.
We will discuss the advantages of using semi-supervised learning in the context of
vulnerability detection and provide insights into how this approach can be optimized
for various software systems.

We introduce SCooLS, our Smart Contract Learning (Semi-supervised) engine.
SCooLS uses neural networks to analyze Ethereum contract bytecode and identi-
fies specific vulnerable functions. The recent use of deep learning techniques for
vulnerability detection in smart contracts has demonstrated the ability to achieve
comparable results to static analysis techniques while offering faster and more effi-
cient analysis at scale. However, the lack of large, labeled data sets for training deep
learning models presents a significant challenge for effective vulnerability detection.

SCooLS incorporates two key elements: semi-supervised learning and graph
neural networks (GNNs). Semi-supervised learning produces more accurate models
than unsupervised learning, while not requiring the large oracle-labeled training set
that supervised learning requires. GNNs enable direct analysis of smart contract
bytecode without any manual feature engineering, predefined patterns, or expert
rules.

176

CHAPTER 5. SEMI-SUPERVISED LEARNING: SCOOLS

SCooLS represents a pioneering application of semi-supervised learning techniques
in the realm of smart contracts vulnerability analysis. It uniquely enables the precise
detection and exploitation of specific vulnerable functions. Significantly, it’s the first
tool to not only identify these vulnerable functions but also to generate authentic
attack demonstrations for end-users and developers. This approach diverges from
the traditional method of simply labeling the entire contract as vulnerable, providing
developers with a tangible method to test the exploitability of their contracts.
SCooLS’s performance is better than existing tools, with an accuracy level of 98.4%,
an F1 score of 90.5%, and an exceptionally low false positive rate of only 0.8%.
Furthermore, SCooLS is fast, analyzing a typical function in 0.05 seconds.

We leverage SCooLS’s ability to identify specific vulnerable functions to build
an auto-exploit generator, which was successful in stealing Ether from 76.9% of the
true positives.

5.1 Introduction
SCooLS borrows two key ideas from DLVA: deep learning (neural nets) and, more

specifically, the use of graph neural networks (GNNs). However, SCooLS differs in
several critical ways: SCooLS uses semi-supervised learning rather than supervised
learning, and targets functions rather than contracts. Our framework design and
use of committees during training are also innovations. Accordingly, our resulting
models are novel. Moreover, our focus on functions allowed the development of an
auto-exploit generator. SCooLS is the first tool to utilize these elements in a smart
contract vulnerability analyzer.

SCooLS focuses on a single well-known smart contract vulnerability, “reentrancy-
eth” (specifically, SWC-107 according to the Smart contract Weakness Classification
system [111]). We focus on reentrancy because it is a well-studied and serious
vulnerability [95, 121]. This means that detecting reentrancy has value in prac-
tice; moreover, its popularity allows for a good comparison with previous work.
Although most famous for the DAO attack in 2016, reentrancy continues to be a
persistent issue in Ethereum smart contracts. Notable recent examples include the
Uniswap/Lendf.Me hacks in April 2020, the SURGEBNB hack in August 2021, the
CREAM FINANCE hack in August 2021, the Siren protocol hack in September

177

CHAPTER 5. SEMI-SUPERVISED LEARNING: SCOOLS

2021, and the Omni attack in July 2022 [28]. The occurrence of attacks can be
attributed to the intricate nature of the semantics of the Etherum Virtual Machine
(EVM) bytecode. Developers may not possess a complete understanding of the
fact that sending ether to a contract can trigger a function call, or that a non-
recursive function can be re-entered before termination. In a reentrancy attack, a
malicious actor takes advantage of these two subtleties to repeatedly call a vulnerable
withdrawal-type function. If the contract has been naïvely coded, this can result
in the same withdrawal being executed multiple times, despite the programmer’s
informal intention to authorize only one withdrawal. It took two weeks to find
and hand-verify our core ReentrancyBook data set (described in §5.3). Extending
SCooLS to other vulnerabilities would require similar incremental effort.

§5.2 We illustrate the differences between deep learning styles.

§5.3 We assemble and hand-verify the ReentrancyBook data set, containing 22
vulnerable and 480 non-vulnerable functions. We also collect and preprocess
our large unlabeled BigBook data set.

§5.4 We explain the design of our smart contract vulnerability analyzer SCooLS.
SCooLS represents a pioneering application of semi-supervised learning tech-
niques in the realm of smart contracts vulnerability analysis. It uniquely
enables the precise detection and exploitation of specific vulnerable functions.
Significantly, it’s the first tool to not only identify these vulnerable func-
tions but also to generate authentic attack demonstrations for end-users and
developers. This approach diverges from the traditional method of simply
labeling the entire contract as vulnerable, providing developers with a tangible
method to test the exploitability of their contracts. We use semi-supervised
learning to train SCooLS. Semi-supervised learning helps address the scarcity
of high-confidence labeled code data in practical smart contract vulnerability
classification tasks. In total we train 120 distinct models derived from applying
a variety of hyperparameters to five state-of-the-art graph neural networks,
using a voting system to smooth out the variance in individual models during
training.

178

CHAPTER 5. SEMI-SUPERVISED LEARNING: SCOOLS

§5.5 We implement an auto-exploit generator to prove that the detected vulnerabil-
ities can be exploited by attackers to steal contract funds.

§5.6 We measure the performance of SCooLS and compare it with three state-of-
the-art tools. SCooLS dominates the competition, obtaining a higher accuracy
level of 98.4%, a higher F1 score of 90.5%, and the lowest false positive rate
of just 0.8%. Moreover, the analysis is fast, requiring only 0.05 seconds per
function. We also showed that the auto-exploit generator was able to attack
76.9% of the true positive instances for which an ABI was available.

§5.7, §5.8 We discuss related work and conclude.

SCooLS availability and ethical considerations. Any vulnerability an-
alyzer can be used with ill intent. Blockchains are tricky for responsible disclo-
sure [20]. Attackers are incentivized to find and attack weak contracts, and due to
the pseudonymous nature of the blockchain, it is hard to quietly inform participants
of vulnerabilities. Concerningly, SCooLS allows attackers to target weak contracts
relatively precisely, and our Exploit Generator enables nearly automatic theft.

On the other hand, reentrancy has long been studied and many available tools
already flag it (e.g., [45, 100, 133, 3]). Other exploit generators for smart contracts
have also been published and made publicly available (e.g., [82, 77]). Moreover,
honest actors benefit from SCooLS too: everyone wants to know if the contracts
they use are vulnerable.

To balance these considerations, we released SCooLS without the Exploit Gen-
erator 60 days after publication and the Exploit Generator a further 60 days after
that: publication at BCCA on 24-26 October, 2023; SCooLS release on 25 December
(Christmas) 2023; and Exploit Generator release on 23 February 2024. SCooLS is
available for download from https://bit.ly/SCooLS-Tool (see “README.md”).
The instructions contain explanation for how to analyze batch of contract bytecodes
at function-level, each function is judged extremely quickly (≈0.05 seconds per
function).

179

https://bit.ly/SCooLS-Tool

CHAPTER 5. SEMI-SUPERVISED LEARNING: SCOOLS

5.2 Deep learning styles
The two most popular deep learning techniques are supervised and unsupervised.

Supervised learning involves training a model on a labeled dataset, attempting to
induce relationships between the elements and their labels. The main disadvantage
of supervised learning is the need to source a large amount of labeled data for
training, which can be expensive and time-consuming to collect. Moreover, labeling
data can be subjective and error-prone, and mislabeled data can affect the accuracy
of the trained model. For example, if we use a static analyzer to label a large training
data set, training must cope with the false positives and negatives produced by said
analyzer.

In contrast, unsupervised learning involves analyzing unlabeled data to identify
patterns within the data, such as clusters, anomalies, or associations. Avoiding the
necessity oracle-labeled data is a major positive, but without a target output for
comparing predictions, it can be difficult to develop a model to solve a particular
decision problem of interest. There are numerous algorithms available for unsuper-
vised learning, but selecting the most appropriate one for a given problem can be
challenging. Identifying which algorithm will produce the most optimal results for a
specific dataset may be difficult.

In our research endeavor, we sought to employ the Fuzzy C-Means (FCM)
clustering algorithm [17]. FCM is a commonly used algorithm in the domain of
data analysis and pattern recognition that is capable of classifying input data into
multiple clusters based on their degree of similarity. Unlike traditional clustering
algorithms that assign a data point to a single cluster, FCM assigns each point to
every cluster with a certain degree of membership, ranging from 0 to 1. This degree
of membership represents the degree of similarity of the data point to the centroid
of that cluster.

In Figure 5.1 the FCM algorithm works by randomly initializing the centroids for
the given number of clusters. Then, for each data point, it calculates the degree of
membership to each cluster based on the Euclidean distance between the data point
and the centroid of that cluster. These membership degrees are used to update the
centroids iteratively until convergence is reached, which occurs when the membership
degrees stabilize and the centroids stop moving. The FCM algorithm is sensitive to

180

CHAPTER 5. SEMI-SUPERVISED LEARNING: SCOOLS

Figure 5.1: Fuzzy C-Means clustering algorithm for reentrancy.

the initial centroid positions, and therefore multiple runs with different initializations
are typically performed to find the optimal solution. Additionally, the algorithm
requires the specification of the number of clusters in advance. The performance of
the FCM algorithm depends on the selection of the initial cluster center and/or the
initial membership value.

Semi-supervised learning strikes a balance between supervised and unsupervised
learning. An initial set of models is trained on a small labeled data set, and then
used to label a large unlabeled data set. The resulting labels are sorted by confidence,
and the high-confidence labels are then used to train the next generation of models.
The process then iterates.

Key idea: In many domains, labeled data is scarce or expensive to obtain. Semi-

181

CHAPTER 5. SEMI-SUPERVISED LEARNING: SCOOLS

supervised learning uses one to three orders of magnitude less data than supervised
learning, and it is easier to gain confidence in the labels of a small data set.

Semi-supervised learning leverages the small labeled training data set to orient
its models (as compared to unsupervised learning). The large unlabeled data set is
used to increase generality and improve robustness to noise/outliers (as compared
to supervised learning on a small data set). By leveraging both, the model can learn
to recognize patterns and make accurate predictions on new data, despite having
only a small amount of genuinely high-confidence labeled data available.

5.3 Design of data sets
We assemble two data sets: a small high-confidence manually-labeled Reentran-

cyBook, and a large unlabeled BigBook. We publish both data sets [12, 6].

ReentrancyBook We collected 932 smart contracts, containing a total of 11,587
functions, from prior work [46, 54, 44]. We then removed redundant functions to yield
502 distinct functions. All of the 932 contracts had source available, enabling manual
labeling of these 502 functions as vulnerable or non-vulnerable for the reentrancy
bug.

Labelling functions requires judgment calls, and our labelling did not always
agree with previous work. Not every vulnerable function is actually exploitable [107],
and some functions are exploitable only under unusual circumstances. For example,
some functions can only be run by the contract’s owner; or will only send Ether to
specific hardcoded addresses; or can only work at specific times or block numbers;
or some piece of contract state is updated before reentrancy, preventing exploitation.
We only label a function vulnerable if it is exploitable by the general public without
such restrictions. In total, we consider only 22 functions to be vulnerable, with the
remaining 480 considered non-vulnerable. We dub the unique labelled functions the
ReentrancyBook data set.

We use the stratified sampling of scikit-learn [106] to divide ReentrancyBook into
halves, with one half being the training/validation set ReentrancyStudyBook (250
functions, of which 11 are vulnerable), and the other as the test set ReentrancyTest-
Book (252 functions, of which 11 are vulnerable).

182

CHAPTER 5. SEMI-SUPERVISED LEARNING: SCOOLS

BigBook Semi-supervised learning requires both a small trusted core data set
(ReentrancyBook) and large secondary data set. We downloaded the latter on Feb 24,
2023 from Google BigQuery [57], yielding 17,806,779 contracts containing 76,024,596
functions1. 99.3% of functions returned from BigQuery are duplicates; removing
redundant functions left us with 554,111 distinct functions. We further removed
the 446 functions already contained in ReentrancyBook to leave us with 553,665
distinct functions, which we dub the BigBook data set. The BigBook functions are
unlabeled, and by construction BigBook and ReentrancyBook are disjoint.

5.4 Designing SCooLS
The design framework of SCooLS is sketched in Figure 5.2. The design divides

into two parts: A) Preprocessing and B) Graph Neural Networks. Preprocesing is
done at the beginning and once. The Graph Neural Networks (GNNs) are where
the training occurs. We will discuss each part in turn.

5.4.1 Preprocessing

Preprocessing begins with the data collection and manual labeling discussed
above in §5.3, and then proceeds to turn a collection of contracts into a collection of
vector-labeled graphs representing individual contract functions. SCooLS is the first
machine learning-based technique judging individual functions rather than whole
contracts and provides an auto-exploit demonstrations for the end-users/developers.

Conventional NLP pretraining techniques treat code as a sequence of tokens,
just as they would a natural language. However, this approach neglects the valuable
structural information present in code that can aid the understanding of its behaviour.
Control-flow graphs (CFGs), directed graphs whose vertices are basic blocks and
whose edges represent execution flow, are more useful for analysis because they
capture important semantic structures within the contract [3].

We use evm-cfg-builder (v0.3.1) [19] to extract control flow graphs (CFGs) from
directly EVM bytecode. The average function in our data sets has 14 basic blocks

1The query is available here: https://console.cloud.google.com/bigquery?sq=814627022
739:e4a5075f5a7141078f0e170ced82ffa0

183

https://console.cloud.google.com/bigquery?sq=814627022739:e4a5075f5a7141078f0e170ced82ffa0
https://console.cloud.google.com/bigquery?sq=814627022739:e4a5075f5a7141078f0e170ced82ffa0

CHAPTER 5. SEMI-SUPERVISED LEARNING: SCOOLS

Figure 5.2: Data Preprocessing and Graph Neural Networks (GNNs) Design.

(nodes), each containing a textual sentence of opcodes (e.g., “PUSH1 0x80 PUSH1
0x40 MSTORE CALLVALUE. . . ”).

Most machine learning techniques prefer to work on vectors rather than sentences,
so to encode a node into fixed-length 512-dimensional vector (N2V), we use the
transformer architecture [138] in the Universal Sentence Encoder [29].

Transformers rely on the self-attention mechanism, processing the whole sequence
all at once (no sequential processing like in RNNs), and assigning a weight to each
opcode to indicate how much “attention” the model should pay to said opcode. The
model takes opcode order and the larger surrounding context into account when
generating an opcode representation. The transformer encoder is composed of 6

184

CHAPTER 5. SEMI-SUPERVISED LEARNING: SCOOLS

stacked transformer layers. Each layer has two sub-layers: a multi-head self-attention
mechanism followed by a fully connected feed-forward network. Transformer uses a
residual connection around each of the two sub-layers, followed by layer normalization
to produce its 512-dimensional outputs, as shown in Figure 5.3.

5.4.2 Graph Neural Networks (GNNs)

A graph neural network (GNN) is designed to perform inference on graph data
structures. In other words, it is a neural network that can classify based on graph
features. In a GNN, each node in the graph is represented by a feature vector
containing information about the node and its neighbors. The GNN uses a series
of graph convolutional layers based on message passing [55] to update each node’s
feature vectors by aggregating the information from neighboring nodes. This process
is iterated to allow the network to learn more complex relationships between nodes
(e.g., after three graph convolutional layers, a node has information about the nodes
three steps away from it).

Graph neural networks (GNNs) have been successfully applied in a wide range of
domains across various learning settings. Key idea: GNNs are particularly effective
when dealing with datasets that can be represented as graphs, where traditional
machine learning algorithms may not be suitable.

SCooLS’s neural nets are based on five state-of-the-art graph convolution meth-
ods [153, 130, 149, 64, 80]. As shown in Figure 5.2.B, our design consists of a series
of graph convolutional layers, followed by an aggregation, which in turn is followed
by a fully connected feed-forward network with a sigmoid activation function for
classification. The design space of our models involves several hyperparameters,
including:

1) the number of graph convolutional layers (1, 2, or 3)

2) the number of neurons (32, 64, 128, or 256) updated by each layer using a
rectified linear unit (ReLU) activation.

3) the pooling aggregation function (average or sum).

4) the number of neurons in two Dense layers with a ReLU activation in the
fully connected feed-forward network, which is the same as the number of

185

CHAPTER 5. SEMI-SUPERVISED LEARNING: SCOOLS

Figure 5.3: Architecture of a Transformer with six encoder layers.

186

CHAPTER 5. SEMI-SUPERVISED LEARNING: SCOOLS

Figure 5.4: The Smart Contracts Semi-Supervised Learning (SCooLS).

neurons in the convolutional layer. Each Dense layer is surrounded by
BatchNormalization and Dropout layers to enhance the model’s generalization
and prevent overfitting.

Key idea: our framework thus generates 5 × 3 × 4 × 2 = 120 models that can learn
from different perspectives, resulting in a significant improvement in accuracy.

5.4.3 Semi-Supervised Self-Training

With the basic design framework in place, we must now explain how the neural
nets are trained. One important consideration when using the self-training approach
is that the model may make errors when labeling the unlabeled data, which can lead
to the propagation of these errors in subsequent iterations of the training process.
To mitigate this risk, it is important to carefully monitor the quality of the newly
labeled data and use techniques such as active learning or voting committee to select
the most informative samples for labeling.

We overview SCooLS’s training cycle in Figure 5.4, illustrating the semi-supervised

187

CHAPTER 5. SEMI-SUPERVISED LEARNING: SCOOLS

learning process. The process begins by using our small labeled dataset Reentran-
cyStudyBook to train an initial set of models (the training engineering is in §5.6).

After the initial models are trained, we enter an iteration loop in which we ask
the current set of models to judge the enormous BigBook of 553,665 functions. The
output for each of the 120 models is a number between 0 (certainly non-vulnerable)
and 1 (certainly vulnerable). Key idea: we now run a voting committee to determine
which contract labels have sufficient model support. We discard any model with
confidence 0.1 < x < 0.9, leaving only the high confidence models, which then vote
for 0 or 1. If a function gets 80+ votes (two-thirds of the models), then that label is
accepted. A function without such a supermajority is considered unknown.

We take the newly-labeled functions, add the trusted ReentrancyStudyBook, and
retrain the models for the next iteration. We continue until a termination condition
is met (e.g. we label all the data, there are no more unlabeled functions that meet
our voting committee criteria, we reach the specified max number of iterations, or
the effect of the classification models is no longer improved).

5.4.4 Final trained models

After training, analyzing a fresh contract is straightforward. The bytecode is
converted to a CFG, whose nodes are transformed into vectors. Subsequently, the
trained GNNs models from the final self-training iteration predict labels for each
function, producing a total of 120 predictions. Finally, the voting committee applies
a voting mechanism to determine the final classification label based on whether at
least two-thirds of the predictions with a confidence level of 90% or higher classify
the function as vulnerable or non-vulnerable.

5.4.5 Discussion

Key idea: semi-supervised training is particularly useful in situations where
labeled data is scarce or expensive to obtain, but a large amount of unlabeled data
is available. To use supervised training, we would need to assemble vulnerability
data sets with hundreds (or thousands) of positive examples, and tens (or hundreds)
of thousands of negative examples.

This size is prohibitive for manual analysis. On the other hand, every automated

188

CHAPTER 5. SEMI-SUPERVISED LEARNING: SCOOLS

analysis exhibits false positives and negatives, which can easily corrupt the learning
process (garbage in, garbage out). Semi-supervised training sidesteps both of these
concerns. It can use a training set 1-3 orders of magnitude smaller, so developing a
high-confidence labeled data set is practicable. Recall that ReentrancyStudyBook
has only 250 functions, of which merely 11 are vulnerable.

By leveraging the unlabeled data, the model can learn to recognize patterns
and make accurate predictions on new data, despite having only a small amount of
genuinely high-confidence labeled data available.

5.5 Auto-Exploit Generator Design
Much of the effort in a hack is finding the needle vulnerability in the blockchain

haystack; as we will see in §5.6, SCooLS does an admirable job at this. Step two,
exploiting the discovered vulnerability, is then often straightforward.

A smart contract auto-exploit generator automatically generates the malicious
code needed to exploit a vulnerable smart contract. We implement a simple yet
effective auto-exploit generator (combination of DL and Program Synthesis) to prove
that attackers can exploit the detected reentrancy vulnerabilities to steal contract
funds.

Generating the exploit The generator is given the Application Binary Interface
(ABI) of the victim contract C, together with the name of the function V that
SCooLS has flagged as vulnerable. The generator examines the ABI to identify all
functions P1, . . . , Pn marked as payable. Next, for each Pi, the generator proceeds
as follows:

1) It generates an Itarget interface to facilitate interaction with the victim
contract C by combining the signature of the target payable function Pi with
the signature of the flagged-vulnerable function V.

2) It generates the contract TheAttacker, containing the functions attack_step1,
attack_step2, receive, and steal, together with contract boilerplate. The
details are generated by template as follows.

189

CHAPTER 5. SEMI-SUPERVISED LEARNING: SCOOLS

3) In attack_step1, the attacker contract invokes the chosen payable function
Pi. Appropriate-typed arguments are selected at random from predefined
dictionary values. The result is to transfer some Ether to the victim contract,
emulating an honest user’s deposit.

4) In attack_step2, the attacker contract calls the vulnerable function V, again
providing it with suitably-typed and randomly-chosen arguments.

5) The key to the hack is the receive function, which is automatically triggered
if V transfers Ether to TheAttacker during attack_step2. receive checks
to see if C has sufficient remaining funds to justify continuing the attack, and
if so calls V again2.

6) Lastly, the steal function transfers the money out of TheAttacker contract
and into the hacker’s wallet.

1 interface Itarget{

2 /* signature of the payable function P */

3 /* signature of the vulnerable function V */

4 }

5 contract TheAttacker{

6 ...

7 function attack_step1() external payable {

8 /* call the payable function P */

9 }

10 function attack_step2() external {

11 /* call the vulnerable function V */

12 }

13 receive() external payable {

14 if (has_funds) {

15 /* call the vulnerable function V */

16 }

17 }

18 function steal() public payable{

19 attacker.transfer(address(this).balance);

20 }

2A more sophisticated version would also track the recursion depth and would halt the theft
before hitting the 1,024 function call depth.

190

CHAPTER 5. SEMI-SUPERVISED LEARNING: SCOOLS

21 }

Here is the victim contract TheBank using payable function deposit and vulner-
able function withdrawal:

1 // SPDX - License - Identifier : MIT

2 pragma solidity ^0.8.17;

3 contract TheBank {

4 mapping(address => uint) theBalances;

5 function deposit() public payable {

6 theBalances[msg.sender] += msg.value;

7 }

8 function withdrawal() public {

9 uint bal = theBalances[msg.sender];

10 require (bal > 0);

11 (bool success,) = msg.sender.call{value: bal}("");

12 require(success, "transaction failed");

13 theBalances[msg.sender] = 0;

14 }

15 }

The aim of the reentrancy attack is to drain the funds of a victim contract and
steal its money. In the case of TheBank contract, the reentrancy attack can be taken
advantage of due to the fact that the balance of the sender is updated after the
money transfer has occurred . At this point, the attacker makes another call to
withdraw while the balance has not yet been updated, so the conditions for a new
transfer are still satisfied. This process can be repeated in a loop of reentrant calls
until all the funds of TheBank are transferred.

Example of automatic generation of TheAttacker contract:

1 // SPDX-License-Identifier: MIT

2 pragma solidity >=0.1.0 <0.9.0;

3 interface Itarget{

4 function deposit() external payable;

5 function withdrawal() external;

6 }

7 contract TheAttacker{

8 Itarget public theBank;

9 address payable public attacker;

191

CHAPTER 5. SEMI-SUPERVISED LEARNING: SCOOLS

10 uint256 public amount = 1 ether;

11 constructor(address _thebankAddress, address payable _attackerAddr) {

12 theBank = Itarget(_thebankAddress);

13 attacker = _attackerAddr;

14 }

15 function attack_step1() external payable {

16 theBank.deposit{value: msg.value}();

17 }

18 function attack_step2() external {

19 theBank.withdrawal();

20 }

21 receive() external payable {

22 if (address(theBank).balance >= amount) {

23 theBank.withdrawal();

24 }

25 }

26 function steal() public payable{

27 attacker.transfer(address(this).balance);

28 }

29 }

The attack starts with the attack_step1 function, which initiates a payment to
the victim contract using the deposit function. Then, the attack_step2 function
calls the withdrawal function, which transfers the funds back to the attacker.
During this transfer, the receive function is triggered, and before it completes,
TheAttacker calls the withdrawal function again to continue draining the victim’s
funds.

Testing the exploit We use Ganache [73], a local development and testing
platform, to replicate the blockchain environment.

1) Deploy the bytecode and ABI of the victim contract to our local blockchain,
with a balance of 0 Ether.

2) Allow normal users to perform standard transactions, invoking the payable
function to send some Ether to the victim contract and increase its balance.

3) SCooLS’s detector pinpoints exploitable functions within a victim contract.

192

CHAPTER 5. SEMI-SUPERVISED LEARNING: SCOOLS

4) For each exploitable function, SCooLS’s auto-exploit generator designs N
attacker contracts corresponding to N payable functions.

5) These attacker contracts are deployed to a controlled local blockchain environ-
ment for safe and ethical testing.

6) Initiate the hack by executing the attack_step1, attack_step2, and steal func-
tions in sequence using three transaction calls.

7) The attacker’s balance is monitored before and after each attack to see if the
attack was successful:

Attacker Balance Before Attack : 1808.65 Ether(s)

Attacker Balance After Attack : 1810.64 Ether(s)

This exploitation net profit is: 1.99 Ether(s)

The detected reentrancy can be exploited.

8) SCooLS provides concrete evidence of financial risks, enabling developers to
prioritize and address vulnerabilities effectively.

5.6 Experiments and Evaluation

5.6.1 Evaluative Metrics

We evaluate the quality of our models from several complementary perspectives.
We use metrics Accuracy (ACC), F1-Score (F1), and False Positives Rate (FPR).
Accuracy is the number of correct predictions made by the model divided by the
total number of predictions made. However, accuracy alone can be misleading if the
dataset is imbalanced or if the cost of false positives and false negatives are not equal.
An F-score (F1) is commonly used to benchmark deep learning for classification
tasks, defined as the harmonic mean of precision and recall3. Precision measures
the proportion of true positives out of all predicted positives, while recall measures
the proportion of true positives out of all actual positives. The False Positive Rate

3The F1 score ranges from 0 to 1, with 1 being the best possible score indicating perfect
precision and recall. In general, a higher F1 score indicates better model performance.

193

CHAPTER 5. SEMI-SUPERVISED LEARNING: SCOOLS

represents the proportion of actual negative instances that are incorrectly predicted
as positive by the model. In other words, it measures the percentage of times that
the model generates a false positive prediction out of all negative instances. We
formally define metrics in §2.6.

5.6.2 Experimental setup

Our machine had 32 GB of memory and a 12-core 3.2 GHz Intel(R) Core(TM)
i7-8700 CPU. We used 64-bit Ubuntu 20.04.6 LTS (Focal Fossa), tensorflow 2.12.0 [1],
tensorflow_hub 0.13.0, spektral [58], evm-cfg-builder [19], and ganache-2.5.4-linux-
x86_64.AppImage [73].

We train the initial models using ReentrancyStudyBook, and then begin the
self-training cycle with a learning rate of 0.005, a batch size of 2,048, and 1,000
epochs. We use the Adam optimizer with a categorical cross-entropy loss function.

To prevent overfitting, we use a rolling 200-epoch window and measure the
validation loss for each model against the ReentrancyStudyBook. If the model with
the lowest validation loss was 200 epochs ago, then training stops and restores that
model. Figure 5.5 displays the training and validation accuracy of an arbitrarily-
chosen model. The validation loss (orange line) minimizes around epoch 57, so when
training stops 200 epochs later, it restores the model from epoch 57.

Table 5.1: The BigBook data set.

Models Vulnerable Non-vulnerable Unknown
BigBook size 0 0 553,665
ReentrancyStudyBook training 48 529,783 23,834
Self-training first iteration 69 553,132 464
Self-training second iteration 82 553,322 261

After training 120 models (one cycle depicted in Figure 5.4), we repeat again,
for three iterations in total including the initial training. Table 5.1 shows how the
training process shrinks the unknown set over time. In total we trained 360 models
over a period of four days, i.e. approximately 16 minutes per model. The 120 models
from the last iteration are used in SCooLS.

194

CHAPTER 5. SEMI-SUPERVISED LEARNING: SCOOLS

Figure 5.5: Training Accuracy and Loss, and Validation Accuracy and Loss

5.6.3 SCooLS vs. state-of-the-art tools

To test the performance of our approach, we evaluated it on the ReentrancyTest-
Book, which by construction is disjoint from the ReentrancyStudyBook and BigBook
data sets used during training. Moreover, we manually labelled each of its 252
functions, giving us high confidence their labels.

We also wish to compare SCooLS against the state-of-the-art actively-used
alternatives ConFuzzius v0.0.1 [133], Slither 0.9.0 [45], and Mythril v0.23.17 [100].

The results are shown in Table 5.2. The primary data are True Positives (TP),
False Positives (FP), True Negatives (TN), and False Negatives (FN). The derived
statistics are Accuracy (ACC), F-score (F1), and False Positive Rate (FPR).

SCooLS has an overall accuracy 98.4% and F1 score 90.4% with an associated
false positive rate of only 0.8%. It enjoys the highest accuracy among the tools, the

195

CHAPTER 5. SEMI-SUPERVISED LEARNING: SCOOLS

highest F1 score, and the lowest false positive rate. Moreover, the average time to
analyze a function was only 0.05 seconds, tied for first place.

ConFuzzius [133] uses a hybrid fuzzer that uses data dependency analysis to
generate effective test cases for smart contracts. Hybrid fuzzing involves an initial
stage of traditional fuzzing that continues until reaching a saturation point where
no new code coverage is achieved after executing a predefined number of steps.
Upon reaching this point, the hybrid fuzzer automatically switches to the process of
symbolic execution, which performs an exhaustive search for unexplored branching
conditions. If a branching condition is found, the symbolic execution process solves
it, and the hybrid fuzzer reverts to the traditional fuzzing stage. ConFuzzius attains
an accuracy level of 97.2%, accompanied by an F1 score of 85.3%, while maintaining
a remarkably low false positive rate of merely 2.1%. The entire process takes 0.48
seconds per function.

Slither [45] is a static analysis framework that analyzes smart contracts source
code through the integration of data flow analysis and taint analysis. Slither
incorporates a large number of detectors that can identify specific issues such as
reentrancy, integer overflow, and uninitialized variables. Slither achieves an accuracy
level of 95.6%, accompanied by an F1 score of 82.2%, while retaining a notably low
false positive rate of 4.6%. The complete analysis process for each function takes a
mere 0.05 seconds, also tied for first place.

Mythril [100] is a powerful tool for identifying potential security issues in smart
contracts, and it is widely used by developers, auditors, and researchers. Mythril
works by using symbolic execution to explore all possible execution paths through
the smart contract’s code to detect potential vulnerabilities. Mythril demonstrates
an accuracy level of 92.1%, along with an F1 score of 72.8%, while maintaining a
relatively higher false positive rate of 7.9%. The complete analysis process for each
function is relatively slower, taking around 12.5 seconds per function.

Table 5.2: SCooLS vs. state-of-the-art tools.
Tool TP FP TN FN ACC F1 FPR Time
SCooLS 9 2 239 2 98.4 90.5 0.8 0.05
ConFuzzius [133] 9 5 236 2 97.2 85.3 2.1 0.48
Slither [45] 11 11 230 0 95.6 82.2 4.6 0.05
Mythril [100] 10 19 222 1 92.1 72.8 7.9 12.5

196

CHAPTER 5. SEMI-SUPERVISED LEARNING: SCOOLS

We evaluate each self-training iteration (Initial, Second, and Third). We use
three committee sizes [70, 80, 90] out of 120 trained models, and three confidences
(Con) [0.85, 0.90, 0.95] in each iteration. As shown in Table 5.3,

Table 5.3: Results on ReentrancyTestBook.

Committee 70/120 Committee 80/120 Committee 90/120
Con ACC F1 FPR ACC F1 FPR ACC F1 FPR

In
it

ia
l 0.85 97.6 87.8 1.7 97.6 85.7 0.8 98.4 89.6 0.0

0.90 96.8 82.5 1.7 98.4 89.6 0.0 98.4 89.6 0.0
0.95 97.6 85.7 0.8 98.4 89.6 0.0 98.4 89.6 0.0

F
ir

st 0.85 98.4 90.5 0.8 98.4 90.5 0.8 98.4 90.5 0.8
0.90 98.4 90.5 0.8 98.4 90.5 0.8 98.4 90.5 0.8
0.95 98.4 90.5 0.8 98.4 90.5 0.8 98.0 87.6 0.8

Se
co

nd 0.85 98.4 90.5 0.8 98.4 90.5 0.8 98.0 87.6 0.8
0.90 98.4 90.5 0.8 98.4 90.5 0.8 98.0 87.6 0.8
0.95 98.4 90.5 0.8 98.0 87.6 0.8 98.0 87.6 0.8

5.6.4 Auto-exploit generator results

To test our auto-exploit generator, we took the 82 positives SCooLS found in
BigBook (see Table 5.1). These 82 positives have a further 89 duplicate instances in
our Google BigQuery, for a total of 171 vulnerable functions.

Unfortunately, not all of the contracts containing these functions offered an
Application Binary Interface (ABI) that allows the general public to easily interact
with their functions. Specifically, only 33 out of the 171 functions had an ABI
available on Etherscan, yielding 14 unique functions. We were able to retrieve the
source code for all 14 unique functions. Manual inspection resolved 4 false positives
(7 including duplicates, 21.2%) and 10 true positives (26 including duplicates, 78.8%).

Most of the false positives are due to functions that are nearly exploitable, for
example because:

1) the contract cannot receive ether, so nothing to steal;

2) the receiver is hardcoded into the contract, so ownership of a specific address
is required to attack; or,

3) the function can only be called at certain timestamps or block numbers, which
makes it challenging to exploit.

197

CHAPTER 5. SEMI-SUPERVISED LEARNING: SCOOLS

Very few of the flagged functions are not exploitable for the “right” reasons, i.e.
because the contract manages its internal state shrewdly to avoid the exploit during
reentrancy.

Of course, our auto-exploit generator cannot exploit a false positive. However, it
was able to exploit 6 of the true positives (20 including duplicates, 76.9%) as shown
in Table 5.4. The remaining 4 true positives (6 with duplicates) are exploitable, but
our auto-exploit generator is not smart enough to do so.

Conclusively, the automated identification of multiple practical end-to-end ex-
ploits in smart contracts holds substantial importance.

Table 5.4: The Auto-Exploit Generator.

Address Vulnerable function Function
duplicates

Exploit
Gen

0x65e5909d665cb ... CashOut(uint256) 11 ✓

0xe610af01f92f1 ... Collect(uint256) 1 ✗

0x2ec17d1df257d ... call() 1 ✗

0x2a98d8fc14b31 ... withdraw() 2 ✓

0xa5d6accc56953 ... CashOut(uint256) 4 ✓

0x0ebe1a9cbf4e2 ... settleEther() 2 ✗

0xdd17afae8a3dd ... Collect(uint256) 2 ✗

0xb7c5c5aa4d429 ... withdraw() 1 ✓

0xf6dbe88ba55f1 ... withdraw(uint256) 1 ✓

0xaf905ab8dad7c ... pullFunds() 1 ✓

5.7 Key Comparative Studies

Static and dynamic analyzers The detection of vulnerabilities in software is
crucial to ensure the security and reliability of the system. Traditional methods
used for vulnerability detection, such as static and dynamic analysis, have also been
applied to smart contracts [93, 100, 134, 132, 45, 105, 136, 99, 76, 59, 133, 105].
Several of these tools (especially ConFuzzius, Slither, and Mythril) are under active
development and are widely used in the community. These tools use expert-crafted
rules and manually engineered features, which can make it challenging to maintain
and update them. Many require or at least benefit from source code (Mythril can
analyze bytecode with some accuracy loss, and earlier tools such as Oyente worked

198

CHAPTER 5. SEMI-SUPERVISED LEARNING: SCOOLS

directly with bytecode). Bytecode analyzers tend to be less precise (and are often
significantly slower), so there is a need for more advanced techniques for vulnerability
detection at scale.

Machine learning Machine learning approaches for smart contract vulnerability
detection has gained some attenion as an alternative to traditional analyzers [128,
98, 89, 126, 109, 3]. Wesley et al. [128] improved vulnerability detection in smart
contracts by using a customized LSTM neural network that sequentially examined
opcodes, resulting in superior accuracy compared to Maian. Momeni et al. [98]
proposed a machine learning model that used AST and CFG to analyze static
source code, with 17 code complexity-based features for model training. This
approach achieved a faster processing time and lower miss rate than the static
analyzers Mythril and Slither. Liao et al. [89] created SoliAudit, an approach that
combines machine learning and a dynamic fuzzer to enhance vulnerability detection
capabilities. To construct the feature matrix, Liao et al. employed word2vec [97]
to generate a vector representation for each opcode, which were then combined
row-wise. The control-flow of the smart contract was not taken into account in
their approach. Sun et al. [126] improved smart contract vulnerability detection
by incorporating an attention mechanism into (non-graph) convolutional neural
networks. Their approach outperformed Oyente and Mythril in terms of both miss
rate and processing time. The proposed method utilizes a CNN model combined
with self-attention and achieves swift detection of vulnerabilities with a reduced
miss rate and average processing time. Qian et al. [109] proposed a deep machine
learning approach to identify Reentrancy vulnerabilities in smart contracts, utilizing
the BLSTM-ATT model. Their method divided the source code into snippets
and employed word2vec to extract code features. The approach showed that deep
learning techniques are suitable for smart contract vulnerability detection and can
achieve high performance.

Sun et al. [125] proposed ASSBert, a new framework that utilizes BERT [38] for
smart contract vulnerability classification, specifically designed to handle limited
labels of solidity source files. The framework uses active and semi-supervised learning
approaches to improve the model’s performance. ASSBert outperformed baseline
methods such as Bert, Bert-AL, and Bert-SSL in terms of performance. However, it

199

CHAPTER 5. SEMI-SUPERVISED LEARNING: SCOOLS

has not been compared with state-of-the-art tools and is not publicly available for
comparison.

Overall, the application of deep learning approaches to smart contract vulner-
ability detection shows promising results, and the use of semi-supervised learning
techniques can potentially improve the accuracy of the models while reducing the
cost of obtaining labeled data.

Auto-exploit generators teEther by Krupp et al. [82] generates exploits for
suicidal and call injection vulnerabilities on the Ethereum platform by analyzing
the binary bytecode of a smart contract. However, it is not designed to identify or
exploit other common vulnerabilities, such as reentrancy.

Jin et al. [77] developed EXGEN, a tool that generates attack contracts with
multiple transactions and tests their exploitability on a private blockchain using
public blockchain values. While the tool is publicly available, reproducing its results
for comparison is challenging due to its complex environment setup.

5.8 Summary
In this research, we have proposed a deep learning approach for Smart Contracts

Semi-Supervised Learning (SCooLS) to detect vulnerable functions in Ethereum
smart contracts at the bytecode level. Our approach incorporates semi-supervised
learning and deep graph neural networks (GNNs) to analyze smart contract bytecode
without any manual feature engineering, predefined patterns, or expert rules.

The results show that our SCooLS approach outperforms existing state-of-the-art
tools, achieving an accuracy level of 98.4% and an F1 score of 90.5%, while exhibiting
an exceptionally low false positive rate of only 0.8%. Additionally, the analysis
process for each function is also quicker than existing tools, requiring only 0.05
seconds.

We have also introduced a voting committee to ensure the integrity of newly
labeled data during the self-training process and avoid the spread of errors to
subsequent iterations. Moreover, we have implemented an auto-exploit generator to
verify that the detected vulnerabilities are real and can be exploited by attackers to
steal contract funds.

200

CHAPTER 5. SEMI-SUPERVISED LEARNING: SCOOLS

To the best of our knowledge, our work is the first to propose a semi-supervised
self-training method for detecting vulnerabilities in smart contracts bytecode at
the function level and providing developers with a tangible method to test the
exploitability of their contracts.

Our results demonstrate the effectiveness of the proposed approach and its
potential to enhance the security of smart contracts. In conclusion, our work
contributes significantly to the field of smart contract security and provides a strong
foundation for future research in this area.

We wish to explore several directions in the future. We aim to extend with
training more vulnerabilities as mach as we can get a small labeled functions for
them. We hope to enhance the auto-exploit generator by using Fuzzing to help in
creating inputs for functions, and may train a ML model to guide the search for
which input should be selected instead of randomly selection, this will make it more
effective.

5.9 Availability
SCooLS is available for download from https://bit.ly/SCooLS-Tool (see

“README.md”). The data sets we use in this research are available as well [12, 6].

201

https://bit.ly/SCooLS-Tool

CHAPTER 6. CONCLUSION AND FUTURE WORK

Chapter 6

Conclusion and Future Work

6.1 Conclusion
In conclusion, this thesis proposes two deep learning approaches for detecting vul-

nerabilities in Ethereum smart contracts: the Deep Learning Vulnerability Analyzer
(DLVA) and Smart Contracts Semi-Supervised Learning (SCooLS). Both approaches
incorporate deep learning techniques to analyze smart contract bytecode without
the need for manual feature engineering, predefined patterns, or expert rules.

DLVA uses a generic design of supervised deep neural networks to detect 29
different types of vulnerabilities in smart contracts. DLVA predicts Slither’s labels
with an overall accuracy of 92.7% and associated false positive rate of 7.2%. We
benchmark DLVA against eleven well-known smart contract analysis tools. Despite
using much less analysis time, DLVA completed every query, leading the pack with
an average accuracy of 99.7%, pleasingly balancing high true positive rates with
low false positive rates. The DLVA is efficient, easy-to-use, and fast, making it a
valuable tool for detecting vulnerabilities in smart contracts.

SCooLS, on the other hand, uses semi-supervised learning and deep graph neural
networks (GNNs) to analyze smart contract bytecode at the function-level. The
SCooLS approach achieved an accuracy level of 98.4%, an F1 score of 90.5%, and a
false positive rate of only 0.8%, outperforming existing state-of-the-art tools. The
approach also includes a voting committee to ensure the integrity of newly labeled
data during the self-training process and an auto-exploit generator to verify the
detected vulnerabilities.

Overall, the thesis presents two novel approaches for detecting vulnerabilities in
Ethereum smart contracts using deep learning techniques, both of which outperform

202

CHAPTER 6. CONCLUSION AND FUTURE WORK

existing state-of-the-art tools. These approaches have the potential to enhance the
security of smart contracts and provide a strong foundation for future research in
this area.

6.2 Future Research Directions
While this thesis focuses on utilizing our approach for smart contract vulnerability

analysis, the underlying principles and insights gained are transferable to a broader
range of secure program analysis tasks. This opens exciting possibilities for further
research and development in diverse domains.

In the following, we propose prospective avenues for further research and expan-
sion of the contributions made in this thesis.

1) Exploring hybrid approaches that leverage both deep learning and classical
program analysis techniques to develop a robust infrastructure for vulnerability
analysis. Such hybrid approaches can potentially improve the accuracy of
detection by combining the strengths of both techniques, such as the ability
of deep learning to identify complex patterns and the ability of classical
program analysis to provide precise and interpretable results. Additionally,
the investigation of novel techniques for optimizing the integration of these
approaches can be an interesting avenue of exploration.

2) The integration of more data sources into vulnerability detection models, such
as user behavior data, can help in building an anomaly detection models that
could be able to catch effectively zero-day vulnerabilities in smart contracts
without relying solely on labeled data, and to enhance the accuracy of detection
and better protect smart contract users.

3) We aim to investigate the potential of utilizing smart contract transactions
in the development of a robust exploit generator. Specifically, we propose to
explore the effectiveness of employing fuzzing techniques to create a precise
input generator for the exploit based on transaction data.

4) Furthermore, there exists another intriguing research avenue that involves
exploring a scalable methodology for the automatic repair of vulnerable smart

203

CHAPTER 6. CONCLUSION AND FUTURE WORK

contracts. This approach would involve integrating deep learning techniques
with both template-based and semantic-based patching methods, with the
additional step of inferring context information from the bytecode.

We believe the above (but not limited to) future research directions will advance
the technology presented in this thesis and contribute to academia and industry.

204

BIBLIOGRAPHY

Bibliography
[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.

Corrado, A. Davis, J. Dean, M. Devin, et al., “Tensorflow: Large-scale
machine learning on heterogeneous distributed systems”, arXiv preprint
arXiv:1603.04467, 2016.

[2] T. Abdelaziz and A. Hobor, “Schooling to exploit foolish contracts”, in 2023
Fifth International Conference on Blockchain Computing and Applications
(BCCA), 2023, pp. 388–395. [Online]. Available: https://ieeexplore.ieee
.org/document/10338924.

[3] T. Abdelaziz and A. Hobor, “Smart learning to find dumb contracts”, in
32nd USENIX Security Symposium (USENIX Security 23), Anaheim, CA:
USENIX Association, Aug. 2023, pp. 1775–1792, isbn: 978-1-939133-37-3.
[Online]. Available: https://www.usenix.org/conference/usenixsecurit
y23/presentation/abdelaziz.

[4] T. Abdelaziz and A. Hobor, “Smart learning to find dumb contracts (extended
version)”, in arXiv.org, 2023. [Online]. Available: https://arxiv.org/abs
/2304.10726.

[5] T. Abdelaziz and A. Hobor, “Usenix’23 artifact appendix: Smart learning
to find dumb contracts”, in 32nd USENIX Security Symposium (USENIX
Security 23), Anaheim, CA: USENIX Association, Aug. 2023, isbn: 978-1-
939133-37-3. [Online]. Available: https://www.usenix.org/system/files
/usenixsecurity23-appendix-abdelaziz.pdf.

[6] T. Abdelaziz and A. Hobor, “BigBook dataset.” https://bit.ly/BigQuery

UnlabeledDataset, [Online; accessed: April-2023].

[7] T. Abdelaziz and A. Hobor, “Elysiumbenchmark.” https://bit.ly/Elysium

_benchmark, [Online; accessed December-2022].

205

https://ieeexplore.ieee.org/document/10338924
https://ieeexplore.ieee.org/document/10338924
https://www.usenix.org/conference/usenixsecurity23/presentation/abdelaziz
https://www.usenix.org/conference/usenixsecurity23/presentation/abdelaziz
https://arxiv.org/abs/2304.10726
https://arxiv.org/abs/2304.10726
https://www.usenix.org/system/files/usenixsecurity23-appendix-abdelaziz.pdf
https://www.usenix.org/system/files/usenixsecurity23-appendix-abdelaziz.pdf
https://bit.ly/BigQueryUnlabeledDataset
https://bit.ly/BigQueryUnlabeledDataset
https://bit.ly/Elysium_benchmark
https://bit.ly/Elysium_benchmark

BIBLIOGRAPHY

[8] T. Abdelaziz and A. Hobor, “EthereumSClarge dataset.” https://bit.ly

/EthereumSC_Dataset_Large, [Online; accessed October-2022].

[9] T. Abdelaziz and A. Hobor, “EthereumSCsmall dataset.” https://bit.ly

/EthereumSC_Dataset_Small, [Online; accessed October-2022].

[10] T. Abdelaziz and A. Hobor, “eThorZeusbenchmark.” https://bit.ly/eThor

_Zeus_groundTruth1, [Online; accessed May-2023].

[11] T. Abdelaziz and A. Hobor, “Reentrancybenchmark.” https://bit.ly/Reent

rancy_benchmark, [Online; accessed December-2022].

[12] T. Abdelaziz and A. Hobor, “ReentrancyBook dataset.” https://bit.ly

/ManuallyLabeledDataset, [Online; accessed: April-2023].

[13] T. Abdelaziz and A. Hobor, “SolidiFIbenchmark.” https://bit.ly/Solidi

FI_benchmark, [Online; accessed December-2022].

[14] N. Ashizawa, N. Yanai, J. P. Cruz, and S. Okamura, “Eth2vec: Learning
contract-wide code representations for vulnerability detection on ethereum
smart contracts”, in Proceedings of the 3rd ACM international symposium on
blockchain and secure critical infrastructure, 2021, pp. 47–59.

[15] N. Atzei, M. Bartoletti, and T. Cimoli, “A survey of attacks on ethereum
smart contracts (sok)”, in International conference on principles of security
and trust, Springer, 2017, pp. 164–186.

[16] E. Bertino, M. Kantarcioglu, C. G. Akcora, S. Samtani, S. Mittal, and M.
Gupta, “Ai for security and security for ai”, in Proceedings of the Eleventh
ACM Conference on Data and Application Security and Privacy, 2021, pp. 333–
334.

[17] J. C. Bezdek, R. Ehrlich, and W. Full, “Fcm: The fuzzy c-means clustering
algorithm”, Computers & geosciences, vol. 10, no. 2-3, pp. 191–203, 1984.

[18] Z. Bilgin, M. A. Ersoy, E. U. Soykan, E. Tomur, P. Çomak, and L. Karaçay,
“Vulnerability prediction from source code using machine learning”, IEEE
Access, vol. 8, pp. 150 672–150 684, 2020.

[19] T. of Bits., “Evm-cfg-builder.” https://github.com/crytic/evm_cfg_bui

lder/releases, [Online; accessed: April-2023].

206

https://bit.ly/EthereumSC_Dataset_Large
https://bit.ly/EthereumSC_Dataset_Large
https://bit.ly/EthereumSC_Dataset_Small
https://bit.ly/EthereumSC_Dataset_Small
https://bit.ly/eThor_Zeus_groundTruth1
https://bit.ly/eThor_Zeus_groundTruth1
https://bit.ly/Reentrancy_benchmark
https://bit.ly/Reentrancy_benchmark
https://bit.ly/ManuallyLabeledDataset
https://bit.ly/ManuallyLabeledDataset
https://bit.ly/SolidiFI_benchmark
https://bit.ly/SolidiFI_benchmark
https://github.com/crytic/evm_cfg_builder/releases
https://github.com/crytic/evm_cfg_builder/releases

BIBLIOGRAPHY

[20] R. Böhme, L. Eckey, T. Moore, N. Narula, T. Ruffing, and A. Zohar, “Respon-
sible vulnerability disclosure in cryptocurrencies”, Commun. ACM, vol. 63,
no. 10, pp. 62–71, Sep. 2020, issn: 0001-0782.

[21] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enriching word vectors
with subword information”, arXiv preprint arXiv:1607.04606, 2016.

[22] P. Bose, D. Das, Y. Chen, Y. Feng, C. Kruegel, and G. Vigna, “Sailfish:
Vetting smart contract state-inconsistency bugs in seconds”, in 2022 IEEE
Symposium on Security and Privacy (SP), IEEE, 2022, pp. 161–178.

[23] L. Brent, A. Jurisevic, M. Kong, E. Liu, F. Gauthier, V. Gramoli, R. Holz,
and B. Scholz, “Vandal: A scalable security analysis framework for smart
contracts”, arXiv preprint arXiv:1809.03981, 2018.

[24] R. Bunel, M. Hausknecht, J. Devlin, R. Singh, and P. Kohli, “Leveraging
grammar and reinforcement learning for neural program synthesis”, arXiv
preprint arXiv:1805.04276, 2018.

[25] V. Buterin et al., “A next-generation smart contract and decentralized appli-
cation platform”, white paper, vol. 3, no. 37, 2014.

[26] J. Cambronero, H. Li, S. Kim, K. Sen, and S. Chandra, “When deep learning
met code search”, in Proceedings of the 2019 27th ACM Joint Meeting on Eu-
ropean Software Engineering Conference and Symposium on the Foundations
of Software Engineering, 2019, pp. 964–974.

[27] E. Capital, “Electric capital developer report”, https://www.developerrep
ort.com/developer-report, [Online; accessed: Jan-2023].

[28] P. M. Caversaccio, “A historical collection of reentrancy attacks.” https

://github.com/pcaversaccio/reentrancy-attacks, [Online; accessed:
April-2023].

[29] D. Cer, Y. Yang, S.-y. Kong, N. Hua, N. Limtiaco, R. S. John, N. Constant,
M. Guajardo-Cespedes, S. Yuan, C. Tar, et al., “Universal sentence encoder”,
arXiv preprint arXiv:1803.11175, 2018.

[30] S. Chakraborty, R. Krishna, Y. Ding, and B. Ray, “Deep learning based
vulnerability detection: Are we there yet”, IEEE Transactions on Software
Engineering, 2021.

207

https://www.developerreport.com/developer-report
https://www.developerreport.com/developer-report
https://github.com/pcaversaccio/reentrancy-attacks
https://github.com/pcaversaccio/reentrancy-attacks

BIBLIOGRAPHY

[31] J. Chen, X. Xia, D. Lo, J. Grundy, X. Luo, and T. Chen, “Defining smart
contract defects on ethereum”, IEEE Transactions on Software Engineering,
vol. 48, no. 1, pp. 327–345, 2020.

[32] J. Chen, X. Xia, D. Lo, J. Grundy, X. Luo, and T. Chen, “Defectchecker:
Automated smart contract defect detection by analyzing evm bytecode”,
IEEE Transactions on Software Engineering, vol. 48, no. 7, pp. 2189–2207,
2021.

[33] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. d. O. Pinto, J. Kaplan, H.
Edwards, Y. Burda, N. Joseph, G. Brockman, et al., “Evaluating large
language models trained on code”, arXiv:2107.03374, 2021.

[34] J. Choi, D. Kim, S. Kim, G. Grieco, A. Groce, and S. K. Cha, “Smartian: En-
hancing smart contract fuzzing with static and dynamic data-flow analyses”,
in 2021 36th IEEE/ACM International Conference on Automated Software
Engineering (ASE), IEEE, 2021, pp. 227–239.

[35] D. S. Contract, Ethereum address 0xaa3a2ae9f85a337070cc8895da292ac373c17851.

[36] K. S. Contract, Ethereum address 0xa8d8feeb169eeaa13957300a8c502d574bda2114.

[37] F. Contro, M. Crosara, M. Ceccato, and M. Dalla Preda, “Ethersolve:
Computing an accurate control-flow graph from ethereum bytecode”, in
2021 IEEE/ACM 29th International Conference on Program Comprehension
(ICPC), IEEE, 2021, pp. 127–137.

[38] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of
deep bidirectional transformers for language understanding”, arXiv preprint
arXiv:1810.04805, 2018.

[39] E. Dinella, H. Dai, Z. Li, M. Naik, L. Song, and K. Wang, “Hoppity: Learning
graph transformations to detect and fix bugs in programs”, in International
Conference on Learning Representations (ICLR), 2020.

[40] S. H. Ding, B. C. Fung, and P. Charland, “Asm2vec: Boosting static repre-
sentation robustness for binary clone search against code obfuscation and
compiler optimization”, in 2019 IEEE Symposium on Security and Privacy
(SP), IEEE, 2019.

208

BIBLIOGRAPHY

[41] T. Durieux, J. F. Ferreira, R. Abreu, and P. Cruz, “Empirical review of
automated analysis tools on 47,587 ethereum smart contracts”, in Proceedings
of the ACM/IEEE 42nd International conference on software engineering,
2020, pp. 530–541.

[42] M. Eshghie, C. Artho, and D. Gurov, “Dynamic vulnerability detection on
smart contracts using machine learning”, in Evaluation and assessment in
software engineering, 2021, pp. 305–312.

[43] Ethereum, “Etherscan: The ethereum blockchain explorer”, https://ethers
can.io/, [Online; accessed: Jan-2023].

[44] Etherscan, “Etherscan Contracts Verified.” https://etherscan.io/contra

ctsVerified?filter=audit, [Online; accessed February-2023].

[45] J. Feist, G. Grieco, and A. Groce, “Slither: A static analysis framework
for smart contracts”, in 2019 IEEE/ACM 2nd International Workshop on
Emerging Trends in Software Engineering for Blockchain (WETSEB), IEEE,
2019, pp. 8–15.

[46] J. F. Ferreira, P. Cruz, T. Durieux, and R. Abreu, “Smartbugs: A framework
to analyze solidity smart contracts”, in Proceedings of the 35th IEEE/ACM
International Conference on Automated Software Engineering, 2020, pp. 1349–
1352.

[47] C. Ferreira Torres, A. K. Iannillo, A. Gervais, and R. State, “The eye of horus:
Spotting and analyzing attacks on ethereum smart contracts”, in International
Conference on Financial Cryptography and Data Security, Springer, 2021,
pp. 33–52.

[48] C. Ferreira Torres, H. Jonker, and R. State, “Elysium: Context-aware bytecode-
level patching to automatically heal vulnerable smart contracts”, in Proceed-
ings of the 25th International Symposium on Research in Attacks, Intrusions
and Defenses, 2022, pp. 115–128.

[49] Z. Gao, “When deep learning meets smart contracts”, in Proceedings of the
35th IEEE/ACM International Conference on Automated Software Engineer-
ing, 2020, pp. 1400–1402.

209

https://etherscan.io/
https://etherscan.io/
https://etherscan.io/contractsVerified?filter=audit
https://etherscan.io/contractsVerified?filter=audit

BIBLIOGRAPHY

[50] Z. Gao, V. Jayasundara, L. Jiang, X. Xia, D. Lo, and J. Grundy, “Smartembed:
A tool for clone and bug detection in smart contracts through structural code
embedding”, in 2019 IEEE International Conference on Software Maintenance
and Evolution (ICSME), IEEE, 2019, pp. 394–397.

[51] Z. Gao, L. Jiang, X. Xia, D. Lo, and J. Grundy, “Checking smart contracts
with structural code embedding”, IEEE Transactions on Software Engineering,
vol. 47, no. 12, pp. 2874–2891, 2020.

[52] F. A. Gers, J. Schmidhuber, and F. Cummins, “Learning to forget: Continual
prediction with lstm”, Neural computation, vol. 12, no. 10, pp. 2451–2471,
2000.

[53] S. M. Ghaffarian and H. R. Shahriari, “Software vulnerability analysis and
discovery using machine-learning and data-mining techniques: A survey”,
ACM Computing Surveys (CSUR), vol. 50, no. 4, pp. 1–36, 2017.

[54] A. Ghaleb and K. Pattabiraman, “How effective are smart contract analysis
tools? evaluating smart contract static analysis tools using bug injection”, in
Proceedings of the 29th ACM SIGSOFT International Symposium on Software
Testing and Analysis, 2020, pp. 415–427.

[55] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl, “Neural
message passing for quantum chemistry”, in International conference on
machine learning, PMLR, 2017, pp. 1263–1272.

[56] Google, “Bigquery - ethereum dataset”, https://console.cloud.google
.com/bigquery?project=dataset-316302&ws=!1m5!1m4!4m3!1sbigquery

-public-data!2scrypto_ethereum!3scontracts, [Retrieved on March 31,
2022].

[57] Google, “Bigquery bigquery-public-data.ethereum_blockchain”, https://co
nsole.cloud.google.com/bigquery, [Retrieved on 25 October 2022].

[58] D. Grattarola and C. Alippi, “Graph neural networks in tensorflow and
keras with spektral [application notes]”, IEEE Computational Intelligence
Magazine, vol. 16, no. 1, pp. 99–106, 2021.

210

https://console.cloud.google.com/bigquery?project=dataset-316302&ws=!1m5!1m4!4m3!1sbigquery-public-data!2scrypto_ethereum!3scontracts
https://console.cloud.google.com/bigquery?project=dataset-316302&ws=!1m5!1m4!4m3!1sbigquery-public-data!2scrypto_ethereum!3scontracts
https://console.cloud.google.com/bigquery?project=dataset-316302&ws=!1m5!1m4!4m3!1sbigquery-public-data!2scrypto_ethereum!3scontracts
https://console.cloud.google.com/bigquery
https://console.cloud.google.com/bigquery

BIBLIOGRAPHY

[59] G. Grieco, W. Song, A. Cygan, J. Feist, and A. Groce, “Echidna: Effective,
usable, and fast fuzzing for smart contracts”, in Proceedings of the 29th ACM
SIGSOFT International Symposium on Software Testing and Analysis, 2020,
pp. 557–560.

[60] X. Gu, H. Zhang, and S. Kim, “Deep code search”, in Proceedings of the 40th
International Conference on Software Engineering, 2018.

[61] R. Guo, W. Chen, L. Zhang, G. Wang, and H. Chen, “Smart contract
vulnerability detection model based on siamese network (scvsn): A case study
of reentrancy vulnerability”, Energies, vol. 15, no. 24, p. 9642, 2022.

[62] R. Gupta, M. M. Patel, A. Shukla, and S. Tanwar, “Deep learning-based
malicious smart contract detection scheme for internet of things environment”,
Computers & Electrical Engineering, vol. 97, p. 107 583, 2022.

[63] A. Hagberg, P. Swart, and D. S Chult, “Exploring network structure, dynam-
ics, and function using networkx”, Los Alamos National Lab.(LANL), Los
Alamos, NM (United States), Tech. Rep., 2008.

[64] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation learning
on large graphs”, Advances in neural information processing systems, vol. 30,
2017.

[65] H. Hanif, M. H. N. M. Nasir, M. F. Ab Razak, A. Firdaus, and N. B. Anuar,
“The rise of software vulnerability: Taxonomy of software vulnerabilities de-
tection and machine learning approaches”, Journal of Network and Computer
Applications, vol. 179, p. 103 009, 2021.

[66] X. Hao, W. Ren, W. Zheng, and T. Zhu, “Scscan: A svm-based scanning
system for vulnerabilities in blockchain smart contracts”, in 2020 IEEE 19th
International Conference on Trust, Security and Privacy in Computing and
Communications (TrustCom), IEEE, 2020, pp. 1598–1605.

[67] K. Hara, T. Takahashi, M. Ishimaki, and K. Omote, “Machine-learning
approach using solidity bytecode for smart-contract honeypot detection in
the ethereum”, in 2021 IEEE 21st International Conference on Software
Quality, Reliability and Security Companion (QRS-C), IEEE, 2021, pp. 652–
659.

211

BIBLIOGRAPHY

[68] S. Hochreiter and J. Schmidhuber, “Long short-term memory”, Neural com-
putation, vol. 9, no. 8, pp. 1735–1780, 1997.

[69] H. Hu, Q. Bai, and Y. Xu, “Scsguard: Deep scam detection for ethereum
smart contracts”, in IEEE INFOCOM 2022-IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS), IEEE, 2022, pp. 1–6.

[70] T. Hu, B. Li, Z. Pan, and C. Qian, “Detect defects of solidity smart contract
based on the knowledge graph”, IEEE Transactions on Reliability, 2023.

[71] T. Hu, J. Li, B. Li, and A. Storhaug, “Why smart contracts reported as
vulnerable were not exploited?”, 2023.

[72] S.-J. Hwang, S.-H. Choi, J. Shin, and Y.-H. Choi, “Codenet: Code-targeted
convolutional neural network architecture for smart contract vulnerability
detection”, IEEE Access, vol. 10, pp. 32 595–32 607, 2022.

[73] C. S. Inc., “Ganache.” https://trufflesuite.com/ganache/, [Online;
accessed: April-2023].

[74] M. Iyyer, V. Manjunatha, J. Boyd-Graber, and H. Daumé III, “Deep un-
ordered composition rivals syntactic methods for text classification”, in
Proceedings of the 53rd annual meeting of the association for computational
linguistics and the 7th international joint conference on natural language
processing (volume 1: Long papers), 2015, pp. 1681–1691.

[75] S. Jeon, G. Lee, H. Kim, and S. S. Woo, “Smartcondetect: Highly accurate
smart contract code vulnerability detection mechanism using bert”, in KDD
Workshop on Programming Language Processing, 2021.

[76] B. Jiang, Y. Liu, and W. K. Chan, “Contractfuzzer: Fuzzing smart con-
tracts for vulnerability detection”, in Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering, 2018, pp. 259–
269.

[77] L. Jin, Y. Cao, Y. Chen, D. Zhang, and S. Campanoni, “Exgen: Cross-
platform, automated exploit generation for smart contract vulnerabilities”,
IEEE Transactions on Dependable and Secure Computing, 2022.

[78] S. Kalra, S. Goel, M. Dhawan, and S. Sharma, “Zeus: Analyzing safety of
smart contracts.” In Ndss, 2018, pp. 1–12.

212

https://trufflesuite.com/ganache/

BIBLIOGRAPHY

[79] J. C. King, “Symbolic execution and program testing”, Communications of
the ACM, vol. 19, no. 7, pp. 385–394, 1976.

[80] T. N. Kipf and M. Welling, “Semi-supervised classification with graph convo-
lutional networks”, arXiv preprint arXiv:1609.02907, 2016.

[81] A. Kolluri, I. Nikolic, I. Sergey, A. Hobor, and P. Saxena, “Exploiting the
laws of order in smart contracts”, in Proceedings of the 28th ACM SIGSOFT
international symposium on software testing and analysis, 2019, pp. 363–373.

[82] J. Krupp and C. Rossow, “{Teether}: Gnawing at ethereum to automatically
exploit smart contracts”, in 27th USENIX Security Symposium (USENIX
Security 18), 2018, pp. 1317–1333.

[83] H. Lal and G. Pahwa, “Code review analysis of software system using machine
learning techniques”, in 2017 11th International Conference on Intelligent
Systems and Control (ISCO), IEEE, 2017, pp. 8–13.

[84] A. LeClair, S. Haque, L. Wu, and C. McMillan, “Improved code summariza-
tion via a graph neural network”, in Proceedings of the 28th international
conference on program comprehension, 2020, pp. 184–195.

[85] N. Li, Y. Liu, L. Li, and Y. Wang, “Smart contract vulnerability detection
based on deep and cross network”, in 2022 3rd International Conference on
Computer Vision, Image and Deep Learning & International Conference on
Computer Engineering and Applications (CVIDL & ICCEA), IEEE, 2022,
pp. 533–536.

[86] Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel, “Gated graph sequence
neural networks”, arXiv preprint arXiv:1511.05493, 2015.

[87] Z. Li, D. Zou, S. Xu, H. Jin, Y. Zhu, and Z. Chen, “Sysevr: A framework for
using deep learning to detect software vulnerabilities”, IEEE Transactions
on Dependable and Secure Computing, vol. 19, no. 4, pp. 2244–2258, 2021.

[88] Z. Li, D. Zou, S. Xu, X. Ou, H. Jin, S. Wang, Z. Deng, and Y. Zhong,
“Vuldeepecker: A deep learning-based system for vulnerability detection”,
arXiv preprint arXiv:1801.01681, 2018.

213

BIBLIOGRAPHY

[89] J.-W. Liao, T.-T. Tsai, C.-K. He, and C.-W. Tien, “Soliaudit: Smart contract
vulnerability assessment based on machine learning and fuzz testing”, in 2019
Sixth International Conference on Internet of Things: Systems, Management
and Security (IOTSMS), IEEE, 2019, pp. 458–465.

[90] L. Liu, W.-T. Tsai, M. Z. A. Bhuiyan, H. Peng, and M. Liu, “Blockchain-
enabled fraud discovery through abnormal smart contract detection on
ethereum”, Future Generation Computer Systems, vol. 128, pp. 158–166,
2022.

[91] Z. Liu, P. Qian, X. Wang, Y. Zhuang, L. Qiu, and X. Wang, “Combining
graph neural networks with expert knowledge for smart contract vulnerability
detection”, IEEE Transactions on Knowledge and Data Engineering, 2021.

[92] Y. Lou, Y. Zhang, and S. Chen, “Ponzi contracts detection based on improved
convolutional neural network”, in 2020 IEEE International Conference on
Services Computing (SCC), IEEE, 2020, pp. 353–360.

[93] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making smart
contracts smarter”, in Proceedings of the 2016 ACM SIGSAC conference on
computer and communications security, 2016, pp. 254–269.

[94] L. Massarelli, G. A. Di Luna, F. Petroni, L. Querzoni, R. Baldoni, et al.,
“Investigating graph embedding neural networks with unsupervised features
extraction for binary analysis”, in Proceedings of the 2nd Workshop on Binary
Analysis Research (BAR), 2019, pp. 1–11.

[95] M. I. Mehar, C. L. Shier, A. Giambattista, E. Gong, G. Fletcher, R. Sanayhie,
H. M. Kim, and M. Laskowski, “Understanding a revolutionary and flawed
grand experiment in blockchain: The dao attack”, Journal of Cases on
Information Technology (JCIT), vol. 21, no. 1, pp. 19–32, 2019.

[96] F. Mi, Z. Wang, C. Zhao, J. Guo, F. Ahmed, and L. Khan, “Vscl: Automating
vulnerability detection in smart contracts with deep learning”, in 2021 IEEE
International Conference on Blockchain and Cryptocurrency (ICBC), IEEE,
2021, pp. 1–9.

[97] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word
representations in vector space”, arXiv preprint arXiv:1301.3781, 2013.

214

BIBLIOGRAPHY

[98] P. Momeni, Y. Wang, and R. Samavi, “Machine learning model for smart
contracts security analysis”, in 2019 17th International Conference on Privacy,
Security and Trust (PST), IEEE, 2019, pp. 1–6.

[99] M. Mossberg, F. Manzano, E. Hennenfent, A. Groce, G. Grieco, J. Feist, T.
Brunson, and A. Dinaburg, “Manticore: A user-friendly symbolic execution
framework for binaries and smart contracts”, in 2019 34th IEEE/ACM
International Conference on Automated Software Engineering (ASE), IEEE,
2019, pp. 1186–1189.

[100] B. Mueller, “Smashing ethereum smart contracts for fun and real profit”,
HITB SECCONF Amsterdam, vol. 9, p. 54, 2018.

[101] MythX, https://swcregistry.io/docs/SWC-107, Retrieved on 11 June
2023.

[102] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system”, Decentralized
Business Review, p. 21 260, 2008.

[103] H. H. Nguyen, N.-M. Nguyen, H.-P. Doan, Z. Ahmadi, T.-N. Doan, and
L. Jiang, “Mando-guru: Vulnerability detection for smart contract source
code by heterogeneous graph embeddings”, in Proceedings of the 30th ACM
Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, 2022, pp. 1736–1740.

[104] H. H. Nguyen, N.-M. Nguyen, C. Xie, Z. Ahmadi, D. Kudendo, T.-N. Doan,
and L. Jiang, “Mando: Multi-level heterogeneous graph embeddings for
fine-grained detection of smart contract vulnerabilities”, in 2022 IEEE 9th
International Conference on Data Science and Advanced Analytics (DSAA),
IEEE, 2022, pp. 1–10.

[105] I. Nikolić, A. Kolluri, I. Sergey, P. Saxena, and A. Hobor, “Finding the greedy,
prodigal, and suicidal contracts at scale”, in Proceedings of the 34th annual
computer security applications conference, 2018, pp. 653–663.

[106] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn:

215

https://swcregistry.io/docs/SWC-107

BIBLIOGRAPHY

Machine learning in Python”, Journal of Machine Learning Research, vol. 12,
pp. 2825–2830, 2011.

[107] D. Perez and B. Livshits, “Smart contract vulnerabilities: Vulnerable does
not imply exploited”, in 30th {USENIX} Security Symposium ({USENIX}
Security 21), 2021.

[108] A. V. Phan, M. Le Nguyen, and L. T. Bui, “Convolutional neural networks
over control flow graphs for software defect prediction”, in 2017 IEEE 29th
International Conference on Tools with Artificial Intelligence (ICTAI), IEEE,
2017, pp. 45–52.

[109] P. Qian, Z. Liu, Q. He, R. Zimmermann, and X. Wang, “Towards automated
reentrancy detection for smart contracts based on sequential models”, IEEE
Access, vol. 8, pp. 19 685–19 695, 2020.

[110] A. Radford, K. Narasimhan, T. Salimans, I. Sutskever, et al., “Improving
language understanding by generative pre-training”,, 2018.

[111] S. Registry, “Smart contract weakness classification and test cases”, https:
//swcregistry.io/, [Online; accessed: Jan-2023].

[112] M. Rodler, W. Li, G. O. Karame, and L. Davi, “Sereum: Protecting existing
smart contracts against re-entrancy attacks”, arXiv preprint arXiv:1812.05934,
2018.

[113] R. Russell, L. Kim, L. Hamilton, T. Lazovich, J. Harer, O. Ozdemir, P.
Ellingwood, and M. McConley, “Automated vulnerability detection in source
code using deep representation learning”, in 2018 17th IEEE international
conference on machine learning and applications (ICMLA), IEEE, 2018,
pp. 757–762.

[114] C. Schneidewind, “Personal email”, May 2023.

[115] C. Schneidewind, I. Grishchenko, M. Scherer, and M. Maffei, “Ethor: Practical
and provably sound static analysis of ethereum smart contracts”,, 2020. arXiv:
2005.06227. [Online]. Available: https://arxiv.org/abs/2005.06227.

216

https://swcregistry.io/
https://swcregistry.io/
https://arxiv.org/abs/2005.06227
https://arxiv.org/abs/2005.06227

BIBLIOGRAPHY

[116] C. Schneidewind, I. Grishchenko, M. Scherer, and M. Maffei, “Ethor: Practical
and provably sound static analysis of ethereum smart contracts”, in Proceed-
ings of the 2020 ACM SIGSAC Conference on Computer and Communications
Security, 2020, pp. 621–640.

[117] M. Schuster and K. K. Paliwal, “Bidirectional recurrent neural networks”,
IEEE transactions on Signal Processing, vol. 45, no. 11, pp. 2673–2681, 1997.

[118] I. Sergey and A. Hobor, “A concurrent perspective on smart contracts”,
in International Conference on Financial Cryptography and Data Security,
Springer, 2017, pp. 478–493.

[119] S. Shakya, A. Mukherjee, R. Halder, A. Maiti, and A. Chaturvedi, “Smart-
mixmodel: Machine learning-based vulnerability detection of solidity smart
contracts”, in 2022 IEEE international conference on blockchain (Blockchain),
IEEE, 2022, pp. 37–44.

[120] T. Sharma, M. Kechagia, S. Georgiou, R. Tiwari, I. Vats, H. Moazen, and
F. Sarro, “A survey on machine learning techniques for source code analysis”,
arXiv preprint arXiv:2110.09610, 2021.

[121] D. Siegel, “Understanding the dao attack”, https://www.coindesk.com/l
earn/2016/06/25/understanding-the-dao-attack/, [Online; accessed:
Jan-2023].

[122] S. So, S. Hong, and H. Oh, “{Smartest}: Effectively hunting vulnerable
transaction sequences in smart contracts through language {model-guided}
symbolic execution”, in 30th USENIX Security Symposium (USENIX Security
21), 2021, pp. 1361–1378.

[123] S. So, M. Lee, J. Park, H. Lee, and H. Oh, “Verismart: A highly precise safety
verifier for ethereum smart contracts”, in 2020 IEEE Symposium on Security
and Privacy (SP), IEEE, 2020, pp. 1678–1694.

[124] Solidity, “Security Considerations”, https://docs.soliditylang.org/en
/v0.8.20/security-considerations.html#reentrancy, 2023.

[125] X. Sun, L. Tu, J. Zhang, J. Cai, B. Li, and Y. Wang, “Assbert: Active and
semi-supervised bert for smart contract vulnerability detection”, Journal of
Information Security and Applications, vol. 73, p. 103 423, 2023.

217

https://www.coindesk.com/learn/2016/06/25/understanding-the-dao-attack/
https://www.coindesk.com/learn/2016/06/25/understanding-the-dao-attack/
https://docs.soliditylang.org/en/v0.8.20/security-considerations.html##reentrancy
https://docs.soliditylang.org/en/v0.8.20/security-considerations.html##reentrancy

BIBLIOGRAPHY

[126] Y. Sun and L. Gu, “Attention-based machine learning model for smart
contract vulnerability detection”, in Journal of physics: conference series,
IOP Publishing, vol. 1820, 2021, p. 012 004.

[127] X. Tang, Y. Du, A. Lai, Z. Zhang, and L. Shi, “Deep learning-based solution
for smart contract vulnerabilities detection”, Scientific Reports, vol. 13, no. 1,
p. 20 106, 2023.

[128] W. J.-W. Tann, X. J. Han, S. S. Gupta, and Y.-S. Ong, “Towards safer smart
contracts: A sequence learning approach to detecting security threats”, arXiv
preprint arXiv:1811.06632, 2018.

[129] P. Technologies, “A postmortem on the parity multi-sig library self-destruct”,
https://www.parity.io/blog/a-postmortem-on-the-parity-multi-si

g-library-self-destruct/, [Online; accessed: Jan-2023].

[130] K. K. Thekumparampil, C. Wang, S. Oh, and L.-J. Li, “Attention-based graph
neural network for semi-supervised learning”, arXiv preprint arXiv:1803.03735,
2018.

[131] D. Tian, X. Jia, R. Ma, S. Liu, W. Liu, and C. Hu, “Bindeep: A deep
learning approach to binary code similarity detection”, Expert Systems with
Applications, vol. 168, p. 114 348, 2021.

[132] S. Tikhomirov, E. Voskresenskaya, I. Ivanitskiy, R. Takhaviev, E. Marchenko,
and Y. Alexandrov, “Smartcheck: Static analysis of ethereum smart contracts”,
in Proceedings of the 1st international workshop on emerging trends in software
engineering for blockchain, 2018, pp. 9–16.

[133] C. F. Torres, A. K. Iannillo, A. Gervais, and R. State, “Confuzzius: A data
dependency-aware hybrid fuzzer for smart contracts”, in 2021 IEEE European
Symposium on Security and Privacy (EuroS&P), IEEE, 2021, pp. 103–119.

[134] C. F. Torres, J. Sch"̈utte, and R. State, “Osiris: Hunting for integer bugs
in ethereum smart contracts”, in Proceedings of the 34th annual computer
security applications conference, 2018, pp. 664–676.

[135] C. F. Torres, M. Steichen, et al., “The art of the scam: Demystifying honeypots
in ethereum smart contracts”, in 28th USENIX Security Symposium (USENIX
Security 19), 2019, pp. 1591–1607.

218

https://www.parity.io/blog/a-postmortem-on-the-parity-multi-sig-library-self-destruct/
https://www.parity.io/blog/a-postmortem-on-the-parity-multi-sig-library-self-destruct/

BIBLIOGRAPHY

[136] P. Tsankov, A. Dan, D. Drachsler-Cohen, A. Gervais, F. Buenzli, and M.
Vechev, “Securify: Practical security analysis of smart contracts”, in Proceed-
ings of the 2018 ACM SIGSAC conference on computer and communications
security, 2018, pp. 67–82.

[137] D. Ucci, L. Aniello, and R. Baldoni, “Survey of machine learning techniques
for malware analysis”, Computers & Security, vol. 81, 2019.

[138] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need”, Advances in neural
information processing systems, vol. 30, 2017.

[139] B. Wang, H. Chu, P. Zhang, and H. Dong, “Smart contract vulnerability
detection using code representation fusion”, in 2021 28th Asia-Pacific Software
Engineering Conference (APSEC), IEEE, 2021, pp. 564–565.

[140] W. Wang, J. Song, G. Xu, Y. Li, H. Wang, and C. Su, “Contractward: Auto-
mated vulnerability detection models for ethereum smart contracts”, IEEE
Transactions on Network Science and Engineering, vol. 8, no. 2, pp. 1133–
1144, 2020.

[141] W. Wang, Y. Zhang, Y. Sui, Y. Wan, Z. Zhao, J. Wu, S. Y. Philip, and
G. Xu, “Reinforcement-learning-guided source code summarization using
hierarchical attention”, IEEE Transactions on software Engineering, vol. 48,
no. 1, pp. 102–119, 2020.

[142] Z. Wang, Q. Zheng, and Y. Sun, “Gvd-net: Graph embedding-based machine
learning model for smart contract vulnerability detection”, in 2022 Interna-
tional Conference on Algorithms, Data Mining, and Information Technology
(ADMIT), IEEE, 2022, pp. 99–103.

[143] L. Wartschinski, Y. Noller, T. Vogel, T. Kehrer, and L. Grunske, “Vudenc:
Vulnerability detection with deep learning on a natural codebase for python”,
Information and Software Technology, vol. 144, p. 106 809, 2022.

[144] M. White, M. Tufano, C. Vendome, and D. Poshyvanyk, “Deep learning code
fragments for code clone detection”, in Proceedings of the 31st IEEE/ACM
international conference on automated software engineering, 2016, pp. 87–98.

219

BIBLIOGRAPHY

[145] G. Wood et al., “Ethereum: A secure decentralised generalised transaction
ledger”, Ethereum project yellow paper, vol. 151, no. 2014, pp. 1–32, 2014.

[146] H. Wu, Z. Zhang, S. Wang, Y. Lei, B. Lin, Y. Qin, H. Zhang, and X.
Mao, “Peculiar: Smart contract vulnerability detection based on crucial data
flow graph and pre-training techniques”, in 2021 IEEE 32nd International
Symposium on Software Reliability Engineering (ISSRE), IEEE, 2021, pp. 378–
389.

[147] Z. Wu, S. Li, B. Wang, T. Liu, Y. Zhu, C. Zhu, and M. Hu, “Detecting
vulnerabilities in ethereum smart contracts with deep learning”, in 2022 4th
International Conference on Data Intelligence and Security (ICDIS), IEEE,
2022, pp. 55–60.

[148] G. Xu, L. Liu, and Z. Zhou, “Reentrancy vulnerability detection of smart
contract based on bidirectional sequential neural network with hierarchi-
cal attention mechanism”, in 2022 International Conference on Blockchain
Technology and Information Security (ICBCTIS), IEEE, 2022, pp. 56–59.

[149] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph neural
networks?” arXiv preprint arXiv:1810.00826, 2018.

[150] Y. Xu, G. Hu, L. You, and C. Cao, “A novel machine learning-based anal-
ysis model for smart contract vulnerability”, Security and Communication
Networks, vol. 2021, pp. 1–12, 2021.

[151] H. Yan, S. Luo, L. Pan, and Y. Zhang, “Han-bsvd: A hierarchical attention
network for binary software vulnerability detection”, Computers & Security,
vol. 108, p. 102 286, 2021.

[152] C. S. Yashavant, S. Kumar, and A. Karkare, “Scrawld: A dataset of real
world ethereum smart contracts labelled with vulnerabilities”, arXiv preprint
arXiv:2202.11409, 2022.

[153] J. You, Z. Ying, and J. Leskovec, “Design space for graph neural networks”,
Advances in Neural Information Processing Systems, vol. 33, pp. 17 009–
17 021, 2020.

220

BIBLIOGRAPHY

[154] X. Yu, H. Zhao, B. Hou, Z. Ying, and B. Wu, “Deescvhunter: A deep
learning-based framework for smart contract vulnerability detection”, in 2021
International Joint Conference on Neural Networks (IJCNN), IEEE, 2021,
pp. 1–8.

[155] C. Zeng, C. Y. Zhou, S. K. Lv, P. He, and J. Huang, “Gcn2defect: Graph
convolutional networks for smotetomek-based software defect prediction”, in
2021 IEEE 32nd International Symposium on Software Reliability Engineering
(ISSRE), IEEE, 2021, pp. 69–79.

[156] J. Zhang, L. Tu, J. Cai, X. Sun, B. Li, W. Chen, and Y. Wang, “Vulnerability
detection for smart contract via backward bayesian active learning”, in
Applied Cryptography and Network Security Workshops: ACNS 2022 Satellite
Workshops, AIBlock, AIHWS, AIoTS, CIMSS, Cloud S&P, SCI, SecMT,
SiMLA, Rome, Italy, June 20–23, 2022, Proceedings, Springer, 2022, pp. 66–
83.

[157] M. Zhang, Z. Cui, M. Neumann, and Y. Chen, “An end-to-end deep learning
architecture for graph classification”, in Thirty-Second AAAI Conference on
Artificial Intelligence, 2018.

[158] Y. Zhang, S. Kang, W. Dai, S. Chen, and J. Zhu, “Code will speak: Early
detection of ponzi smart contracts on ethereum”, in 2021 IEEE International
Conference on Services Computing (SCC), IEEE, 2021, pp. 301–308.

[159] Y. Zhang and D. Liu, “Toward vulnerability detection for ethereum smart
contracts using graph-matching network”, Future Internet, vol. 14, no. 11,
p. 326, 2022.

[160] S. Zhou, M. M"̈oser, Z. Yang, B. Adida, T. Holz, J. Xiang, S. Goldfeder,
Y. Cao, M. Plattner, X. Qin, et al., “An ever-evolving game: Evaluation of
real-world attacks and defenses in ethereum ecosystem”, in 29th USENIX
Security Symposium (USENIX Security 20), 2020, pp. 2793–2810.

[161] Y. Zhou, S. Liu, J. Siow, X. Du, and Y. Liu, “Devign: Effective vulnerability
identification by learning comprehensive program semantics via graph neural
networks”, Advances in neural information processing systems, vol. 32, 2019.

221

BIBLIOGRAPHY

[162] Y. Zhuang, Z. Liu, P. Qian, Q. Liu, X. Wang, and Q. He, “Smart contract
vulnerability detection using graph neural networks”, in Proceedings of the
Twenty-Ninth International Conference on International Joint Conferences
on Artificial Intelligence, 2021, pp. 3283–3290.

[163] W. Zou, D. Lo, P. S. Kochhar, X.-B. D. Le, X. Xia, Y. Feng, Z. Chen, and
B. Xu, “Smart contract development: Challenges and opportunities”, IEEE
Transactions on Software Engineering, 2019.

222

APPENDIX A. WORD VS. SENTENCE EMBEDDINGS

Appendix A

Word vs. Sentence Embeddings
Word and sentence embeddings are two essential techniques used in natural

language processing (NLP) for representing text data.
Word embeddings are a type of distributed representation of words in a language.

They are essentially a way of representing words as numerical vectors that capture
the semantic and syntactic meaning of the word in the context of a given text corpus.
Word embeddings are typically generated using unsupervised learning techniques
such as word2vec, GloVe, or FastText. These algorithms use large amounts of text
data to learn the underlying relationships between words in the corpus, and then
generate word vectors that can be used as features for downstream NLP tasks such
as sentiment analysis, language modeling, or machine translation.

Sentence embeddings, on the other hand, are a way of representing entire
sentences as numerical vectors. Unlike word embeddings, which represent individual
words, sentence embeddings capture the semantic meaning of an entire sentence in
a given context. There are different methods for generating sentence embeddings,
including averaging the word embeddings of the sentence, using recurrent neural
networks (RNNs) or convolutional neural networks (CNNs) to encode the sentence,
or using pre-trained language models such as BERT, GPT-2, RoBERTa, or universal
sentence encoder (USE).

One of the main advantages of using sentence embeddings over word embeddings
is that they can capture the overall meaning and context of a sentence, including its
syntax, structure, and discourse. This makes sentence embeddings particularly useful
for tasks such as document classification, text clustering, or information retrieval,
where the goal is to group or classify text documents based on their content.

In summary, both word and sentence embeddings are important techniques for

223

APPENDIX A. WORD VS. SENTENCE EMBEDDINGS

representing text data in NLP. Word embeddings capture the meaning of individual
words, while sentence embeddings capture the meaning of entire sentences. Depend-
ing on the task and the nature of the text data, one or the other may be more
appropriate or effective.

A.1 Word-level Embeddings
Word-level embeddings are crucial in several NLP tasks, including sentiment

analysis, machine translation, and text classification. They enable machines to
learn from textual data in a more efficient and effective manner, as compared to
traditional methods that rely on hand-crafted features. By representing words as
vectors, word embeddings capture the context and meaning of words, enabling
machines to understand relationships between words.

Bytecode instructions as text data poses a challenge in machine learning, as
models cannot directly interpret textual information and instead require numerical
feature vectors. Binary vectors, such as one-hot encoding, are commonly used by
mapping tokens to integer values. However, word embeddings provide a more effective
alternative by using unsupervised machine learning algorithms like fastText [21]
and word2vec [97] to learn semantic relationships between bytecode instructions.
The resulting word vectors encode the meaning of the instructions and offer a more
nuanced representation of the text data. To produce a single vector representing
each basic block of instructions, an appropriate composition function, such as RNNs,
LSTMs, or BiLSTMs, is necessary when using word embedding methods.

A.1.1 Recurrent Neural Networks (RNNs)

RNNs are powerful machine learning models adapted to sequence data and
operate over sequences of vectors one by one. RNNs can use their internal state
(memory) to process variable length sequences of inputs which makes them applicable
to process variable length of bytecode instructions. RNNs, as shown in Figure A.1,
combine the input vector xi with previous hidden state hi−1 where i ∈ {1, 2, 3, ..., m}
into one vector that has information on the current input and previous inputs, then
it goes through the tanh activation function (tanh activation is used to help regulate
the values flowing through the network to be always between -1 and 1.) to produce

224

APPENDIX A. WORD VS. SENTENCE EMBEDDINGS

a new hidden state (or representations) vector hi in Equation A.1 for the next step
xi+1.

hi = tanh(Wh.hi−1 + Wx.xi + b) (A.1)

where W represents the weight matrix , b represents the bias parameter and tanh(·)
represents the standard hyperbolic tangent function.

Figure A.1: Recurrent Neural Networks (RNNs).

RNNs use the hidden representations { h1, h2, ..., hm } for estimation and predic-
tion. Simple RNNs are great when we are dealing with short-term dependencies,
but fail to understand and remember the context behind long-term sequences. This
is because RNNs suffer from the vanishing gradient problem that happens when
gradient (values used to update a neural networks weights) shrinks as it back propa-
gates through time of processing long sequences. RNNs layer that gets an extremely
small gradient update doesn’t contribute too much learning. So because some layers
stop learning, RNNs can forget what it seen in longer sequences.

A.1.2 Long Short Term Memory Networks (LSTMs)

LSTMs [68, 52] have an edge over RNNs because of their property of selectively
remembering patterns for long duration of time and the ability of learning long-term
dependencies. LSTMs have a similar control flow as a recurrent neural networks, but

225

APPENDIX A. WORD VS. SENTENCE EMBEDDINGS

the repeating module has a different structure and an internal mechanisms called
gates interacting in a very special way.

Figure A.2: Long Short Term Memory Networks (LSTMs).

The key concept of LSTMs, as shown in Figure A.2, is the cell state that works
as the “memory” of the network. LSTMs first gate is called forget gate ft in
Equation A.2 that is to decide what information will be thrown away from the cell
state or kept. Forget gate is passing the previous hidden state ht−1 and the current
input xt through sigmoid function, and outputs a number between 0 and 1 for each
number in the cell state Ct−1. The closer to 0 means “completely get rid of this”,
and the closer to 1 means “completely keep this”.

ft = σ(Wf .[ht−1, xt] + bf) (A.2)

LSTMs input gate it in Equation A.3 decides which values will be updated, and C̃t

in Equation A.4 creates a vector of new candidate values that could be added to the
cell state.

it = σ(Wi.[ht−1, xt] + bi) (A.3)

226

APPENDIX A. WORD VS. SENTENCE EMBEDDINGS

C̃t = tanh(WC .[ht−1, xt] + bC) (A.4)

In order to update the cell state Ct in Equation A.5, the old state is multiplied by
ft to forget information that forget gate decided to forget earlier. Then it’s added
to the new candidate values of C̃t multiplied by the input gate it value.

Ct = ft ∗ Ct−1 + it ∗ C̃t (A.5)

Finally, the output gate ot in Equation A.6 decides what the next hidden state
should be in Equation A.7. The new cell state and the new hidden is then carried
over to the next time step.

ot = σ(Wo.[ht−1, xt] + bo) (A.6)

ht = ot ∗ tanh(Ct) (A.7)

LSTMs have the ability to remove or add information to the cell state using
gates. LSTMs gates can learn which data in a sequence is important to keep or
throw away to keep the important features in long sequences and use them to make
prediction.

A.1.3 Applying the word-level embeddings during research

In summary, word-level embeddings play a critical role in advancing the field of
NLP and enabling machines to understand and process text more effectively. Their
importance lies in their ability to represent words and sentences in a meaningful and
efficient manner, allowing machines to learn from textual data and perform various
NLP tasks with high accuracy and efficiency.

Our dataset consists of roughly 714 million instructions. To learn vector repre-
sentations of bytecode instructions, we applied word embedding methods, including
fastText and word2vec. We found fastText performed better than word2vec, reducing
the loss to 2.3% compared to 30% in word2vec. Both methods require an appropriate
composition function, we used a 2-layer of Bidirectional Long Short-Term Memory
(BiLSTM) [117] to aggregate all instructions of each CFG node ni into a single
vector −→xi , as shown in Figure A.3. The BiLSTM model consists of two LSTMs, one
taking input in a forward direction and the other in a backward direction. It can

227

APPENDIX A. WORD VS. SENTENCE EMBEDDINGS

Figure A.3: Node Instructions Composition using Bidirectional Long Short-Term
Memory.

learn and achieve high performance and accuracy on sequential learning tasks. The
model is trained end-to-end, taking input of all instruction embedding vectors in
order(−→i1 , ..., −→

im), generating m outputs and m hidden states (−→
h(1), ..., −−→

h(m)). The
final feature vector −→xi for each node is obtained from the last hidden state −−→

h(m). It
took 6.22 seconds per contract to learn the representation of bytecode instructions
using fastText and generate the final node feature vector using BiLSTM.

228

APPENDIX A. WORD VS. SENTENCE EMBEDDINGS

A.2 Sentence-level Embeddings
One popular method for generating sentence-level embeddings is to use pre-

trained models such as BERT (Bidirectional Encoder Representations from Trans-
formers) [38], GPT (Generative Pretrained Transformer) [110] or USE (Universal
Sentence Encoder) [29]. These models are trained on large amounts of text data
and can capture the contextual relationships between words in a sentence, allowing
them to generate high-quality sentence embeddings.

The Universal Sentence Encoder (USE) is a pre-trained model developed by
Google that generates high-quality sentence-level embeddings. These embeddings
can be used to represent the meaning of a sentence in a high-dimensional vector space,
allowing for efficient similarity calculations and comparisons between sentences.

There are two variants of the universal sentence encoder models: a) Transformer
Encoder makes use of the transformer architecture [138], it consists of 6 stacked
transformer layers, each layer has a self-attention module followed by a feed-forward
network, it targets high accuracy at the expense of computing time and memory
usage scaling dramatically with the length of the sentence. b) Deep Averaging
Network(DAN) [74] is computationally less expensive with slightly reduced accuracy,
DAN is much simpler where the embeddings for word and bi-grams present in a
sentence are averaged together then passed through 4-layer feed-forward deep DNN
to produce 512-dimensional sentence embedding as output, the embeddings for word
and bi-grams are learned during training. The main advantage of the DAN encoder
is that the computation time is linear in the length of the input sequence,

In our proposed architecture, DLVA, we utilized the Universal Sentence Encoder
(USE), which has demonstrated superior performance compared to fastText followed
by BiLSTMs. We first use fastText to learn the representation of EVM instructions,
and then employ BiLSTMs to aggregate the instructions of each node, taking
approximately 6.22 seconds per contract. Alternatively, by utilizing USE, we can
transform these instructions in just 0.3 seconds per contract.

229

PUBLICATIONS DURING PHD STUDY

Publications during PhD Study

[1] T. Abdelaziz and A. Hobor, “Smart learning to find dumb contracts”, in
32nd USENIX Security Symposium (USENIX Security 23), Anaheim, CA:
USENIX Association, Aug. 2023, pp. 1775–1792, isbn: 978-1-939133-37-3.
[Online]. Available: https://www.usenix.org/conference/usenixsecurit
y23/presentation/abdelaziz.

[2] T. Abdelaziz and A. Hobor, “Smart learning to find dumb contracts (extended
version)”, in arXiv.org, 2023. [Online]. Available: https://arxiv.org/abs
/2304.10726.

[3] T. Abdelaziz and A. Hobor, “Usenix’23 artifact appendix: Smart learning
to find dumb contracts”, in 32nd USENIX Security Symposium (USENIX
Security 23), Anaheim, CA: USENIX Association, Aug. 2023, isbn: 978-1-
939133-37-3. [Online]. Available: https://www.usenix.org/system/files
/usenixsecurity23-appendix-abdelaziz.pdf.

[4] T. Abdelaziz and A. Hobor, “Schooling to exploit foolish contracts”, in 2023
Fifth International Conference on Blockchain Computing and Applications
(BCCA), 2023, pp. 388–395. [Online]. Available: https://ieeexplore.ieee
.org/document/10338924.

230

https://www.usenix.org/conference/usenixsecurity23/presentation/abdelaziz
https://www.usenix.org/conference/usenixsecurity23/presentation/abdelaziz
https://arxiv.org/abs/2304.10726
https://arxiv.org/abs/2304.10726
https://www.usenix.org/system/files/usenixsecurity23-appendix-abdelaziz.pdf
https://www.usenix.org/system/files/usenixsecurity23-appendix-abdelaziz.pdf
https://ieeexplore.ieee.org/document/10338924
https://ieeexplore.ieee.org/document/10338924

	Acknowledgments
	Contents
	Abstract
	List of Figures
	List of Tables
	Introduction
	Research Questions
	Contributions
	Thesis Statement
	Tools Specification
	Thesis Organization

	Background
	Ethereum
	Smart Contracts
	Ethereum Virtual Machine
	Smart Contract Vulnerabilities
	Deep Learning: Methods and Applications
	Learning Methods
	The Mechanics of a Basic Neural Network
	Graph Neural Networks (GNNs)

	Evaluation Metrics

	Related work
	Static and Dynamic Analysis Methods for SC
	Symbolic Execution (SymEx) Studies/Tools:
	Fuzzing (Fuz) Studies/Tools:
	Static Analysis (StAn) Studies/Tools:

	Learning-based Techniques for SC
	Machine Learning (ML) Studies/Tools:
	Sequential Deep Learning (Seq. DL) Studies/Tools:
	Graph Deep Learning (Graph DL) Studies/Tools:

	Learning-based Techniques for PL
	Sequential Deep Learning (Seq. DL) Studies/Tools:
	Graph Deep Learning (Graph DL) Studies/Tools:

	Data Sources and Benchmarks
	Manually Crafted Datasets:
	Real World Datasets:

	Summary of Related Work
	Comparing Our Approach to State-of-the-Art
	Ethical Disclosure
	Threats to Validity

	Supervised Deep Learning: DLVA
	Introduction
	Designing DLVA
	Preprocessing
	Unsupervised Node Feature Extraction: N2V
	Supervised Training: SC2V and CC
	Selection of hyperparameters
	Sibling Detector (SD)
	Tweaking for smaller contracts
	Final details

	Experiments and Evaluation
	Designing benchmark datasets
	DLVA's neural nets vs. alternatives
	Evaluating DLVA's models against Slither
	DLVA vs. state-of-the-art tools
	Discussion

	Key Comparative Studies
	Summary
	Availability

	Semi-Supervised Learning: SCooLS
	Introduction
	Deep learning styles
	Design of data sets
	Designing SCooLS
	Preprocessing
	Graph Neural Networks (GNNs)
	Semi-Supervised Self-Training
	Final trained models
	Discussion

	Auto-Exploit Generator Design
	Experiments and Evaluation
	Evaluative Metrics
	Experimental setup
	SCooLS vs. state-of-the-art tools
	Auto-exploit generator results

	Key Comparative Studies
	Summary
	Availability

	Conclusion and Future Work
	Conclusion
	Future Research Directions

	Bibliography
	Word vs. Sentence Embeddings
	Word-level Embeddings
	Recurrent Neural Networks (RNNs)
	Long Short Term Memory Networks (LSTMs)
	Applying the word-level embeddings during research

	Sentence-level Embeddings

	Publications during PhD Study

